High thermal conductivity and dense AlN/CNT composite ceramics with additive Y2O3 were fabricated by spark plasma sintered (SPS) in this paper. The results indicated that CNT blocked the densification process in a certain extent, but in the sintering temperature of 1700°C, the relative density of composite ceramics were more than 97% with 1-10% volume fractions of CNT. The content of additive Y2O3 affected the thermal conductivity of AlN/CNT obviously. The thermal conductivity of composite material linearly decreased when the content of CNT increased and the tubular structure of CNT had been destructed during once sintering. The effects of the CNT structural damage to the thermal conductivity of composite ceramics were improved by adjusting the sintering process. The thermal conductivity of the composite ceramics with 3% volume fractions of CNT sintering in 1550°C/3min×3 was up to 145W/m•K, which higher than the single-phase AlN ceramics.
This paper studied the change regulation of the electrical resistivity of alkali-free boro-aluminosilicate glasses with the rate of SrO/(CaO + SrO) in the range 600~1600°C.The results showed that a mixed alkaline effect was observed with the increase of SrO content in alkali-free aluminoborosilcate glasses: the maximam resistivity of 178Ωcm appeared at SrO/(CaO+SrO) ratio =0.24, which is much larger than 108Ωcm at SrO=0. Meanwhile, the experiment results showed that the SrO makes stronger influence on the resistivity of the glass than CaO does. The Arrhenius plots, which showed the change of the resistivity with temperature in range of 1100~1625°C, present nonlinear variation, and an inflection at about 1100°C. It proved that the electrical resistivity of the alkali-free aluminoborosilcate glasses were controlled by the ionic radius of alkaline earth metals and the viscosity of glass melts.
We reported a facile hydrothermal route for the preparation of WO3TiO2 composite nanoparticles (TWCNs) using waste WC-TiC hardmetal in the presence of hydrofluoric acid (HF). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and nitrogen adsorption/desorption analysis were employed for structural and composition analyses of the TWCNs. Our results suggested that HF was not only strongly involved in the growth of WO3, but also played a critical role in the etching effect for TWCN product. The photocatalytic activity of TWCNs was investigated by UV-vis spectroscopy. Dye molecules could be rapidly decomposed with TWCNs photocatalyst under visible light illumination. The enhanced photocatalytic activity is attributed to well matched band edge positions of WO3 and TiO2, and the large specific surface area of TWCNs in view of the incorporation of mesopores. The results presented here are expected to make a contribution toward the development of recycling waste resource delicately for photocatalytic water purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.