In the brain, CB1 cannabinoid receptors primarily mediate the effects of cannabinoids, but CB2 cannabinoid receptors (CB2Rs) have recently been discovered in the nervous system and also implicated in neuromodulatory roles. To understand the mechanisms of CB2R functions in the brain, it is essential to localize CB2Rs, but the types of cells expressing CB2Rs have been controversial. Unequivocal localization of CB2Rs in the brain has been impeded in part by the low expression levels of CB2Rs and poor specificity of detection methods. Here, we used an ultrasensitive and specific in situ hybridization method called the RNAscope to determine the spatial pattern of CB2R mRNA expression in the mouse hippocampus. CB2R mRNAs were mostly expressed in a subset of excitatory and inhibitory neurons in the CA1, CA3 and dentate gyrus areas, but rarely in microglia. CB2R knock-out mice were used as a negative control. Using the quantitative real-time polymerase chain reaction, we also found that the temporal pattern of CB2R mRNA expression was stable during postnatal development. Consistent with previous reports, the immunological detection of CB2Rs was not reliable, implying extremely low levels of the protein expression and/or insufficient specificity of the current anti-CB2R antibodies. Our findings of the expression patterns of CB2R mRNAs may help determine the cell types involved in, and hence the mechanisms of, the CB2R-mediated neuromodulation.
Key pointsr The effects of cannabinoids are primarily mediated by two types of cannabinoid receptors, CB1 receptors in the nervous system and CB2 receptors in the immune system. r Recent evidence indicates that CB2 receptors are also widely expressed in the brain and involved in neuropsychiatric functions, such as schizophrenia-like behaviours, anxiety, memory, vomiting and pain. r The cellular mechanisms by which CB2 receptors regulate neuronal functions are unknown. r We show that chronic activation of CB2 receptors in the hippocampus for 7-10 days increases excitatory synaptic transmission, whereas short-term activation of CB2 receptors has little effect on synaptic activity.r This study reveals a novel role of CB2 receptors in the brain, which is clearly distinct from that of CB1 receptors, and thus, will help us to understand better the diverse effects of cannabinoids in the nervous system. AbstractThe roles of CB1 cannabinoid receptors in regulating neuronal activity have been extensively characterized. Although early studies show that CB1 receptors are present in the nervous system and CB2 cannabinoid receptors are in the immune system, recent evidence indicates that CB2 receptors are also expressed in the brain. Activation or blockade of CB2 receptors in vivo induces neuropsychiatric effects, but the cellular mechanisms of CB2 receptor function are unclear. The aim of this study is to determine how activation of CB2 receptors present in the hippocampus regulates synaptic function. Here, we show that when organotypic cultures of rodent hippocampal slices were treated with a CB2 receptor agonist (JWH133 or GP1a) for 7-10 days, quantal glutamate release became more frequent and spine density was increased via extracellular signal-regulated kinases. Chronic intraperitoneal injection of JWH133 into mice also increased excitatory synaptic transmission. These effects were blocked by a CB2 receptor antagonist (SR144528) or absent from hippocampal slices of CB2 receptor knock-out mice. This study reveals a novel cellular function of CB2 cannabinoid receptors in the hippocampus and provides insights into how cannabinoid receptor subtypes diversify the roles of cannabinoids in the brain. Abbreviations ACSF, artificial cerebrospinal fluid; 2-AG, 2-arachidonoylglycerol; BSA, bovine serum albumin; CB1R, CB1 cannabinoid receptor; CB2R, CB2 cannabinoid receptor; 9 -THC, 9 -tetrahydrocannabinol; DIV, days in vitro; DSI, depolarization-induced suppression of inhibition; eEPSC, evoked excitatory postsynaptic current; eIPSC, evoked inhibitory postsynaptic current; ERK, extracellular signal-regulated kinase; fEPSP, field excitatory postsynaptic potential; I/O, input-output; KO, knock-out; LTP, long-term potentiation; mEPSC, miniature excitatory postsynaptic current; mIPSC, miniature inhibitory postsynaptic current; P r , probability of release; R m , membrane resistance; RRP, readily releasable pool; TBST, Tris-buffered saline with Tween 20.
Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas.
The effects of cannabinoids are mostly mediated by two types of cannabinoid receptors--CB1 receptors in the nervous system and CB2 receptors in the immune system. However, CB2 cannabinoid receptors have recently been discovered in the brain and also implicated in neurophysiological functions. The deletion of CB2 receptors in mice induces long-term memory deficits and schizophrenia-like behaviors, implying that endogenous activity of CB2 receptors might be involved in neuropsychiatric effects. Little is known about the cellular mechanisms by which physiological activation of CB2 receptors modulates neuronal functions. We aimed to determine how deletion of CB2 receptors in mice affects synaptic transmission and plasticity. Electrophysiological and morphological studies indicated that CB2 receptor knockout resulted in decreases in excitatory synaptic transmission, long-term potentiation, and dendritic spine density in the hippocampus. Our data imply that endogenous activity of CB2 receptors might contribute to the maintenance of synaptic functions and the expression of normal long-term potentiation. This study provides insights into the role of CB2 cannabinoid receptors in regulating cognitive functions such as long-term memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.