This work investigated the photoluminescence characteristics of TiO2 and discussed the relationship between
the photoluminescence features of TiO2 and the photoassisted reaction of water/methanol mixture. It is found
that anatase TiO2 displays a visible luminescence band centered at about 505 nm and rutile TiO2 mainly
shows a near-infrared luminescence band centered at about 835 nm, which are respectively ascribed to the
oxygen vacancies in anatase TiO2 and the intrinsic defects in rutile TiO2. The visible luminescence band is
easily quenched by the Pt deposited on the surface of TiO2, while the near-infrared luminescence band is
hardly influenced by the deposited Pt. It is suggested that the excited electrons trapped in the oxygen vacancies
of anatase are facilely transferred to Pt to contribute to the photoassisted reaction, but the electrons trapped
in the intrinsic defects of rutile are not.
The nucleation process of iron-exchanged zeolite Fe-ZSM-5, from the assembly of distorted tetrahedrally coordinated iron species and silicate rings in the precursor to the final Fe-ZSM-5 crystals, as well as variations in the coordination environment of iron, were studied by UV resonance Raman spectroscopy and complementary techniques.The entire sequence of crystallization events of Fe-ZSM-5 was monitored by UV Raman spectroscopy in combination with HRTEM, UV/Vis spectroscopy, X-ray diffraction patterns, and periodic DFT calculations. Fe-ZSM-5 was synthesized by an organic-free method to avoid signal interference from the organic template in Raman spectra. Framework iron atoms with resonance Raman bands at 516, 1115, and 1165 cm(-1), and a Raman band at 1016 cm(-1) are detected for Fe-ZSM-5. In the early stage of Fe-ZSM-5 synthesis, the precursor contains iron atoms in distorted tetrahedral coordination and five- and six-membered silicate rings. Nucleation by aggregation of the precursor species was monitored by UV Raman spectroscopy based on the resonance Raman effect, and confirmed by periodic DFT calculations. Evolution of iron species on the surface and in the bulk phase was monitored by UV Raman spectroscopy with excitation at 244 and 325 nm, as well as HRTEM. Nucleation takes place first in the core of the amorphous particles, and crystalline nuclei with Fe-ZSM-5 structure are formed in the core by consuming the amorphous shell. Finally the amorphous particles are completely transformed into Fe-ZSM-5 crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.