A novel wearable electrocardiograph (ECG) QRS detection algorithm for wearable ECG devices in body area networks is presented in this paper, which utilizes the multistage multiscale mathematical morphology filtering to suppress the impulsive noise and uses the multiframe differential modulus accumulation to remove the baseline drift and enhance the signal. The proposed algorithm, verified with data from the MIT/BIH Arrhythmia Database and wearable ECG devices, achieves an average QRS detection rate of 99.61%, a sensitivity of 99.81%, and a positive prediction of 99.80%. It compares favorably to the published methods.
This paper presents a novel electrocardiogram (ECG) processing technique for joint data compression and QRS detection in a wireless wearable sensor. The proposed algorithm is aimed at lowering the average complexity per task by sharing the computational load among multiple essential signal-processing tasks needed for wearable devices. The compression algorithm, which is based on an adaptive linear data prediction scheme, achieves a lossless bit compression ratio of 2.286x. The QRS detection algorithm achieves a sensitivity (Se) of 99.64% and positive prediction (+P) of 99.81% when tested with the MIT/BIH Arrhythmia database. Lower overall complexity and good performance renders the proposed technique suitable for wearable/ambulatory ECG devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.