Purpose: TGF-b promotes tumor invasion and metastasis by inducing an epithelial-mesenchymal transition (EMT). However, the underlying mechanisms causing this are not entirely clear. Long noncoding RNAs (lncRNA) have been shown to play important regulatory roles in cancer progression. The lncRNA malat1 (metastasis associated lung adenocarcinoma transcript 1) is a critical regulator of the metastasis phenotype of lung cancer cells.Experimental Design: We, therefore, investigated whether TGF-b regulates malat1 expression to promote tumor metastasis of bladder cancer. The expression levels of malat1 and EMT markers were assayed in specimens of bladder cancer. The role of malat1 in regulating bladder cancer metastasis was evaluated in cell and animal models.Results: TGF-b induces malat1 expression and EMT in bladder cancer cells. malat1 overexpression is significantly correlated with poor survival in patients with bladder cancer. malat1 and E-cadherin expression is negatively correlated in vitro and in vivo. malat1 knockdown inhibits TGF-b-induced EMT. malat1 is associated with suppressor of zeste 12 (suz12), and this association results in decrease of E-cadherin expression and increase of N-cadherin and fibronectin expression. Furthermore, targeted inhibition of malat1 or suz12 suppresses the migratory and invasive properties induced by TGF-b. Finally, we demonstrated that malat1 or suz12 knockdown inhibits tumor metastasis in animal models.Conclusion: These data suggest that malat1 is an important mediator of TGF-b-induced EMT, and suggest that malat1 inhibition may represent a promising therapeutic option for suppressing bladder cancer progression. Clin Cancer Res; 20(6); 1531-41. Ó2014 AACR.
Direct gene transfer into adult animals resulting in generalized or tissue-specific expression would facilitate rapid analysis of transgene effects and allow precise in vivo manipulation of biologic processes at the molecular level. A single intravenous injection of expression plasmid:cationic liposome complexes into adult mice efficiently transfected virtually all tissues. In addition to vascular endothelial cells, most of the extravascular parenchymal cells present in many tissues including the lung, spleen, lymph nodes, and bone marrow expressed the transgene without any apparent treatment-related toxicity. The transgene was still expressed in large numbers of cells in multiple tissues for at least 9 weeks after a single injection. Expression could be targeted to specific tissues and cell types, depending on the promoter element used.
Chemotherapy is a reasonable alternative to cystectomy in patients with invasive and advanced bladder cancer. However, bladder cancer cells often develop drug resistance to these therapies, and~50% of patients with advanced bladder cancer do not respond to chemotherapy. Recent studies have shown that long non-coding RNA (lncRNA) is involved in the development of chemoresistance. Here we investigated the role of the urothelial cancer-associated 1 (UCA1) lncRNA in cisplatin resistance during chemotherapy for bladder cancer. We showed that cisplatin-based chemotherapy results in up-regulation of UCA1 expression in patients with bladder cancer. Similarly, UCA1 levels are increased in cisplatin-resistant bladder cancer cells. Over-expression of UCA1 significantly increases the cell viability during cisplatin treatment, whereas UCA1 knockdown reduces the cell viability during cisplatin treatment. UCA1 inhibition also partially overcomes drug resistance in cisplatin-resistant T24 cells. Furthermore, we showed that UCA1 positively regulates expression of wingless-type MMTV integration site family member 6 (Wnt6) in human bladder cancer cell lines. UCA1 and Wnt6 expression is also positively correlated in vivo. Up-regulation of UCA1 activates Wnt signaling in a Wnt6-dependent manner. We finally demonstrate that UCA1 increases the cisplatin resistance of bladder cancer cells by enhancing the expression of Wnt6, and thus represents a potential target to overcome chemoresistance in bladder cancer.
Mammary epithelial cells constitutively expressing Id-1 protein are unable to differentiate, acquire the ability to proliferate, and invade the extracellular matrix. In addition, Id-1 is aberrantly over-expressed in aggressive and metastatic breast cancer cells, as well as in human breast tumor biopsies from infiltrating carcinomas, suggesting Id-1 might be an important regulator of breast cancer progression. We show that human metastatic breast cancer cells become significantly less invasive in vitro and less metastatic in vivo when Id-1 is downregulated by stable transduction with antisense Id-1. Expression of the matrix metalloproteinase MT1-MMP is decreased in proportion to the decrease in Id-1 protein levels, representing a potential mechanism for the reduction of invasiveness. Further, to more accurately recapitulate the biology of and potential therapeutic approaches to tumor metastasis, we targeted Id-1 expression systemically in tumorbearing mice by using a nonviral approach. We demonstrate significant reduction of both Id-1 and MT1-MMP expressions as well as the metastatic spread of 4T1 breast cancer cells in syngeneic BALB͞c mice. In conclusion, our studies have identified Id-1 as a critical regulator of breast cancer progression and suggest the feasibility of developing novel therapeutic approaches to target Id-1 expression to reduce breast cancer metastasis in humans.T he Id (inhibitor of DNA binding) genes were originally identified in murine myoblasts, where they prevented myogenic basic helix-loop-helix (bHLH) transcription factors from binding muscle-specific regulatory elements (1). These transcription factors are key regulators of tissue-specific gene expression in a number of mammalian and nonmammalian organisms, and constitutive expression of Id proteins has been shown to inhibit the differentiation of various tissues (2). bHLH proteins act as obligate dimers, dimerizing through HLH domains, and bind to DNA through the composite basic domains to activate the transcription of target genes containing E-boxes (CANNTG) in their promoters. Id proteins dimerize with bHLH proteins, but the Id-bHLH heterodimers fail to bind to DNA because Id proteins lack the basic domains necessary for DNA interaction.Four members of the Id gene family have been described to date: Id-1, . The different family members localize to different chromosomes and show marked differences in their pattern of expression and function (3, 4). Although the family members are similar in the HLH sequence, the regions outside the HLH domain are distinct for each member and may determine the tissue specificity of Id function, as well as the binding specificity for particular bHLH proteins.We previously developed a line of murine mammary epithelial cells (MEC), SCp2 cells, which originated from a midpregnant mouse mammary gland (5, 6). A role for HLH Id proteins in the differentiation of SCp2 cells was suggested by our finding that Id-1 expression declined to undetectable levels when the cells were induced to differentiate in culture ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.