Bacterial-infections are mostly due to bacteria in their biofilm-mode of growth. Nanotechnology-based antimicrobials possess excellent potential in biofilm-infection control, overcoming the biological barriers of biofilms.
Biofilms cause persistent bacterial infections and are extremely recalcitrant to antimicrobials, due in part to reduced penetration of antimicrobials into biofilms that allows bacteria residing in the depth of a biofilm to survive antimicrobial treatment. Here, we describe the preparation of surface-adaptive, Triclosan-loaded micellar nanocarriers showing (1) enhanced biofilm penetration and accumulation, (2) electrostatic targeting at acidic pH toward negatively charged bacterial cell surfaces in a biofilm, and (3) antimicrobial release due to degradation of the micelle core by bacterial lipases. First, it was established that mixed-shell-polymeric-micelles (MSPM) consisting of a hydrophilic poly(ethylene glycol) (PEG)-shell and pH-responsive poly(β-amino ester) become positively charged at pH 5.0, while being negatively charged at physiological pH. This is opposite to single-shell-polymeric-micelles (SSPM) possessing only a PEG-shell and remaining negatively charged at pH 5.0. The stealth properties of the PEG-shell combined with its surface-adaptive charge allow MSPMs to penetrate and accumulate in staphylococcal biofilms, as demonstrated for fluorescent Nile red loaded micelles using confocal-laser-scanning-microscopy. SSPMs, not adapting a positive charge at pH 5.0, could not be demonstrated to penetrate and accumulate in a biofilm. Once micellar nanocarriers are bound to a staphylococcal cell surface, bacterial enzymes degrade the MSPM core to release its antimicrobial content and kill bacteria over the depth of a biofilm. This constitutes a highly effective pathway to control blood-accessible staphylococcal biofilms using antimicrobials, bypassing biofilm recalcitrance to antimicrobial penetration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.