As the education of students attracts more and more attention, the task of graduation development prediction has gradually become a hot topic in academia and industry. The task of graduation development prediction aims to predict the employment category of students in advance via academic achievement data, which can help administrators understand students' learning status and set up a reasonable learning plan. However, existing research ignores the potential impact of social relationships on students' graduation development choices. To fully explore social relationships among students, we propose a Social-path Embedding-based Transformer Neural Network (SPE-TNN) for the task of graduation development prediction in this paper. Specifically, SPE-TNN is divided into the Social-path selection layer, the Social-path embedding layer, the Transformer layer, and the Multi-layer projection layer. Firstly, the Social-path selection layer is designed to find social relationships that impact graduation development and embed them into the student's performance features through the Social-path embedding layer. Secondly, the Transformer layer is adopted to balance the weights of the students' features. Finally, the Multi-layer projection layer is used to achieve the student graduation development prediction. Experimental results on the real-world datasets show that SPE-TNN outperforms the existing popular approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.