The capacity of ad hoc wireless networks is constrained by the interference between concurrent transmissions from neighboring nodes. Gupta and Kumar have shown that the capacity of an ad hoc network does not scale well with the increasing number of nodes in the system when using omnidirectional antennas [6]. We investigate the capacity of ad hoc wireless networks using directional antennas. In this work, we consider arbitrary networks and random networks where nodes are assumed to be static.In arbitrary networks, due to the reduction of the interfer-Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
In this work, we consider the delivery of digital video over future 3G wireless IP networks and we propose a low-complexity adaptive motion-based unequal error protection (UEP) video coding and transmission system which efficiently combines three existing error-resilience techniques by exploiting knowledge of the source material as well as the channel operating conditions. Given this information, the proposed system can adaptively adjust the operating parameters of the video source encoder and the forward error correction (FEC) channel encoder to maximize the delivered video quality based upon both application-layer video motion estimates and link-layer channel estimates. We demonstrate the efficacy of this approach using the ITU-T H.264 video source coder. The results indicate that a significant performance improvement can be achieved with enhanced resilience to inaccurate channel feedback information and with substantially reduced computational complexity compared to competing approaches.
The capacity of wireless ad hoc networks is constrained by the interference caused by the neighboring nodes. Gupta and Kumar have shown that the throughput for such networks is only ( W √ n ) bits per second per node in a unit area domain when omnidirectional antennas are used [1]. In this paper we investigate the capacity of ad hoc wireless networks using directional antennas. Using directional antennas reduces the interference area caused by each node, thus increases the capacity of the network. We will give an expression for the capacity gain and we argue that in the limit, when the beam-width goes to zero the wireless network behaves like the wired network. In our analysis we consider both arbitrary networks and random networks where nodes are assumed to be static. We have also analyzed hybrid beamform patterns that are a mix of omnidirectional/directional and a better model of real directional antennas. Simulations are conducted for validation of our analytical results.
Assuming a wireless ad hoc network consisting of n homogeneous video users with each of them also serving as a possible relay node for other users, we propose a cross-layer rate-control scheme based on an analytical study of how the effective video transmission rate is affected by the prevailing operating parameters, such as the interference environment, the number of transmission hops to a destination, and the packet loss rate. Furthermore, in order to provide error-resilient video delivery over such wireless ad hoc networks, a cross-layer joint source-channel coding (JSCC) approach, to be used in conjunction with rate-control, is proposed and investigated. This approach attempts to optimally apply the appropriate channel coding rate given the constraints imposed by the effective transmission rate obtained from the proposed rate-control scheme, the allowable real-time video play-out delay, and the prevailing channel conditions. Simulation results are provided which demonstrate the effectiveness of the proposed cross-layer combined rate-control and JSCC approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.