Two carbofuran-metabolizing Sphingomonas strains, TA and CD, were isolated from soils with differing histories of exposure to carbofuran. These strains were compared with a previously described strain, Sphingomonas sp. CFO6, with regard to growth rate, formation of metabolites, and plasmid content and structure. Extensive regions of similarity were observed between the three different plasmid systems as evidenced by cross hybridization. In addition, all three systems harbor IS1412, an insertion sequence (IS) element involved in heat-induced loss of carbofuran phenotype in CFO6, and heat-induced carbofuran deficient mutants of all three strains correlated with loss of IS1412. A carbofuran deficient mutant of TA generated by induction of IS elements was complemented by reintroduction of the wild-type plasmid, confirming the presence of genes required for carbofuran metabolism on this plasmid. Carbofuran metabolism in these three strains is clearly linked via plasmids of different numbers and sizes that share extensive common regions, and carbofuran-degrading genes may be associated with active IS elements.
Tobacco plants were transformed with the movement protein (pathogenicity) gene (BC1) from tomato mottle geminivirus (TMoV), using Agrobacterium-mediated transformation. Different transgenic tobacco lines that expressed high levels of the BC1 protein had phenotypes ranging from plants with severe stunting and leaf mottling (resembling geminivirus symptoms) to plants with no visible symptoms. The sequence data for the BC1 transgene from the transgenic plants with the different phenotypes indicated an association of spontaneously mutated forms of the BC1 gene in the transformed tobacco with phenotype variations. One mutated transgene associated with an asymptomatic phenotype had a major deletion at the C terminus of 119 amino acid residues with a recombination resulting in the addition of 26 amino acid residues of unidentified origin. This asymptomatic, mutated BC1 attenuated the phenotypic expression of the symptomatic BC1 in a tobacco line containing both copies of the BC1 gene. Another mutated form of the BC1 gene amplified from an asymptomatic, multicopy transgenic tobacco plant did not induce symptoms when transiently expressed in tobacco via a virus vector. The symptom attenuation in the transgenic tobacco by the asymptomatic BC1 may involve trans-dominant negative interference.
Bacterial strain M213 was isolated from a fuel oil-contaminated soil in Idaho, USA, by growth on naphthalene as a sole source of carbon, and was identified as Rhodococcus opacus M213 by 16S rDNA sequence analysis and growth on substrates characteristic of this species. M213 was screened for growth on a variety of aromatic hydrocarbons, and growth was observed only on simple 1 and 2 ring compounds. No growth or poor growth was observed with chlorinated aromatic compounds such as 2,4-dichlorophenol and chlorobenzoates. No growth was observed by M213 on salicylate, and M213 resting cells grown on naphthalene did not attack salicylate. In addition, no salicylate hydroxylase activity was detected in cell free lysates, suggesting a pathway for naphthalene catabolism that does not pass through salicylate. Enzyme assays indicated induction of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase on different substrates. Total DNA from M213 was screened for hybridization with a variety of genes encoding catechol dioxygenases, but hybridization was observed only with catA (encoding catechol 1,2-dioxygenase) from R. opacus 1CP and edoD (encoding catechol 2,3-dioxygenase) from Rhodococcus sp. I1. Plasmid analysis indicated the presence of two plasmids (pNUO1 and pNUO2). edoD hybridized to pNUO1, a very large (approximately 750 kb) linear plasmid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.