Plants contain complex actin gene families composed of several diverse and ancient subclasses of genes. One Arabidopsis actin gene subclass represented by the ACT4 and ACT12 genes has been isolated and characterized. Both actin genes have typical plant actin gene structures, including three small introns interrupting the coding region and an intron within the mRNA leader. Their encoded proteins differ from each other in only one amino acid, whereas they differ in 3-10% of their amino acids from the other five Arabidopsis actin subclasses. They also share a few small blocks of DNA sequence homology in the 5' flanking region near their TATA boxs, but not in their introns, 3' flanking regions, or degenerate positions within codons. Southern analysis with gene-specific probes from 5' flanking sequences showed that both were single copy genes in the genome. Both RNA gel blot analysis with 3' gene-specific probes and reverse transcriptase-mediated polymerase chain reactions (RT-PCR) with gene-specific primers detected low levels of ACT4 and ACT12 mRNAs in flowers and very high levels in pollen. The RT-PCR detected very low levels of these mRNAs in the vegetative organs. The 5' region from both genes, including the promoter region, TATA box, the sequence for the mRNA leader and its intron, and the first 19 actin codons, was fused to a beta-glucuronidase (GUS) reporter gene. Expression of the GUS fusions were examined histochemically in 40 independent transgenic Arabidopsis plants. Expression of the ACT4/GUS fusion was restricted to young vascular tissues, tapetum, and developing and mature pollen. Similar expression patterns in these tissues and cell types were observed for ACT12/GUS fusion, yet unlike ACT4, ACT12 was also strongly expressed in the root cap and in a ring of pericycle tissues during lateral root initiation and early development. The unique expression patterns of the ACT4/ACT12 actin gene subclass are discussed in light of recent data on the other expressed members of the Arabidopsis actin gene family.
Higher plants contain families of actin-encoding genes that are divergent and differentially expressed. Progress in understanding the functions and evolution of plant actins has been hindered by the large size of the actin gene families. In this study, we characterized the structure and evolution of the actin gene family in Arabidopsis thaliana. DNA blot analyses with gene-specific probes suggested that all 10 of the Arabidopsis actin gene family members have been isolated and established that Arabidopsis has a much simpler actin gene family than other plants that have been examined. Phylogenetic analyses suggested that the Arabidopsis gene family contains at least two ancient classes of genes that diverged early in land plant evolution and may have separated vegetative from reproductive actins. Subsequent divergence produced a total of six distinct subclasses of actin, and five showed a distinct pattern of tissue specific expression. The concordance of expression patterns with the phylogenetic structure is discussed. These subclasses appear to be evolving independently, as no evidence of gene conversion was found. The Arabidopsis actin proteins have an unusually large number of nonconservative amino acid substitutions, which mapped to the surface of the actin molecule, and should effect protein-protein interactions.
We have proposed that ancient and divergent classes of plant actin genes have been preserved throughout vascular plant evolution, because they have distinct patterns of gene regulation. The hypothesis was explored for AC7Y and ACT3, which represent one of the six ancient subclasses in the Arabidopsis actin gene family. Comparison of AC7Y and ACT3 cDNA and genomic sequences revealed highly divergent flanking and intron sequences, whereas they encoded nearly identical proteins. Quantification of their leve1 of divergence suggests that they have not shared a common ancestor for 30 to 60 million years. Gene-specific FINA gel blot hybridization and reverse transcriptase-polymerase chain reaction analyses demonstrated that the distribution of AC7Y and ACT3 mRNAs was very similar: both preferentially accumulated at high levels in mature pollen and at very low levels in the other major organs. The 5' flanking regions of both genes, including the promoter, leader exon and intron, and thefirst 19 codons, werefused to the P-giucuronidase (GUS) reporter gene. The expression of these reporter fusions was examined in a large number of transgenic Arabidopsis plants. Histochemical assays demonstrated that both ACTT-GUS and ACT3-GUS constructs were expressed preferentially in pollen, pollen tubes, and in all organ primordia, including those in roots, shoots, and the inflorescence. Comparison of the 5' flanking regions of AC7Y and ACT3 revealed a number of short conserved sequences, which may direct their common transcriptional and post-transcriptional regulation. The expression patterns observed were distinct from those of any other Arabidopsis actin subclass. The conservation of their expression pattern and amino acid sequences suggests that this actin subclass plays a distinct and required role in the plant cytoskeleton.
ACT11 represents a unique and ancient actin subclass in the complex Arabidopsis actin gene family. We have isolated and characterized the Arabidopsis ACT11 actin gene and examined its expression. Southern blotting with a 5' gene-specific probe showed that ACT11 was a single-copy gene in the genome. Northern analysis with a 3' gene-specific probe and reverse transcriptase-mediated PCR (RT-PCR) using gene-specific primers detected ACT11 mRNA at low levels in seedling, root, leaf, and silique tissue; at moderate levels in the inflorescence stem and flower; and at very high levels in pollen. The 5' region of the ACT11 gene, including the promoter region, the 5'-untranslated leader, the intron within the leader, and the first 19 actin codons, was fused to a beta-glucuronidase (GUS) reporter gene. The expression of the ACT11/GUS fusion was examined histochemically in numerous independent transgenic Arabidopsis plants. Strong ACT11/GUS activity was detected in rapidly elongating tissues and organs (e.g., etiolated hypocotyls, expanding leaves, stems) and in floral organ primordia. As the floral buds developed into mature flowers, strong GUS activity was gradually restricted to mature pollen and developing ovules. ACT11 appears to be the only Arabidopsis actin gene expressed at significant levels in ovule, embryo, and endosperm. The unique expression patterns in reproductive organs and the sequence divergence of the ACT11 actin gene suggest that the ACT11 isovariant plays distinct and required roles during Arabidopsis development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.