Human liver CYP2E1 is a monotopic, endoplasmic reticulumanchored cytochrome P450 responsible for the biotransformation of clinically relevant drugs, low molecular weight xenobiotics, carcinogens, and endogenous ketones. CYP2E1 substrate complexation converts it into a stable slow-turnover species degraded largely via autophagic lysosomal degradation. Substrate decomplexation/withdrawal results in a fast turnover CYP2E1 species, putatively generated through its futile oxidative cycling, that incurs endoplasmic reticulum-associated ubiquitin-dependent proteasomal degradation (UPD). CYP2E1 thus exhibits biphasic turnover in the mammalian liver. We now show upon heterologous expression of human CYP2E1 in Saccharomyces cerevisiae that its autophagic lysosomal degradation and UPD pathways are evolutionarily conserved, even though its potential for futile catalytic cycling is low due to its sluggish catalytic activity in yeast. This suggested that other factors (i.e. post-translational modifications or "degrons") contribute to its UPD. Indeed, in cultured human hepatocytes, CYP2E1 is detectably ubiquitinated, and this is enhanced on its mechanismbased inactivation. Studies in Ubc7p and Ubc5p genetically deficient yeast strains versus corresponding isogenic wild types identified these ubiquitin-conjugating E2 enzymes as relevant to CYP2E1 UPD. Consistent with this, in vitro functional reconstitution analyses revealed that mammalian UBC7/gp78 and UbcH5a/CHIP E2-E3 ubiquitin ligases were capable of ubiquitinating CYP2E1, a process enhanced by protein kinase (PK) A and/or PKC inclusion. Inhibition of PKA or PKC blocked intracellular CYP2E1 ubiquitination and turnover. Here, through mass spectrometric analyses, we identify some CYP2E1 phosphorylation/ubiquitination sites in spatially associated clusters. We propose that these CYP2E1 phosphorylation clusters may serve to engage each E2-E3 ubiquitination complex in vitro and intracellularly.Hepatic cytochromes P450 (P450s) 2 are endoplasmic reticulum (ER)-anchored hemoproteins involved in the metabolism of numerous endo-and xenobiotics. These substrates can modulate P450 content, diversity, and/or function (see Refs. 1, 2 and references therein) through induction via either increased synthesis or protein stabilization, i.e. half-life prolongation (3-9). By contrast, "suicide" substrate/inactivators accelerate the degradation of certain P450s and dramatically curtail their halflives (10 -23). Such substrate-mediated P450 induction and/or enhanced turnover can influence the severity and the time course of certain pharmacokinetic/pharmacodynamic drugdrug interactions and is an important therapeutic consideration (24 -27).P450 turnover has been proposed to involve various proteolytic mechanisms (6 -9, 28 -38). However, it is now increasingly evident that in common with other type I monotopic ER proteins, P450s such as CYPs 3A (both native and structurally inactivated) undergo ER-associated degradation (ERAD) involving the ubiquitin (Ub)-dependent 26 S proteasomal system (UPS) (6 ...
Hepatic tryptophan 2,3-dioxygenase (TDO) is a cytoplasmic homotetrameric hemoprotein and the rate-limiting enzyme in the irreversible degradation of the essential amino acid L-tryptophan (L-Trp) to N-formylkynurenine, thus controlling the flux of L-Trp into its serotonergic and kynureninic/NAD pathways. TDO has long been recognized to be substrate-inducible via protein stabilization, but the molecular mechanism of this stabilization has remained elusive. Recent elucidation of human TDO (hTDO) crystal structure has identified a high-affinity (Kd ≈ 0.5 µM)Trp-binding exosite in each of its 4 monomeric subunits. Mutation of the Glu105, Trp208 and Arg211 comprising this exosite not only abolished the high-affinity L-Trp binding, but also accelerated the ubiquitin-dependent proteasomal degradation of hTDO. We have further characterized this hTDO degradation by documenting that its ubiquitination by gp78/AMFR and CHIP E2/E3 ligase complexes occurs on external Lys-residues within or vicinal to acidic Asp/Glu and phosphorylated pSer/pThr (DEpSpT)-clusters. Furthermore, we have identified the unstructured hTDO N-and C-termini as imparting relatively high proteolytic instability, as their deletion (DNC) markedly prolonged hTDO t1/2. Additionally, although previous studies reported that upon hepatic heme-depletion, the heme-free apoTDO turns over with a t1/2 ≈ 2.2 h relative to the t1/2 of 7.7 h of holoTDO, mutating the axial heme-ligating His328 to Ala has the opposite effect of prolonging hTDO t1/2. Most importantly, introducing the exosite mutation into the DNC-deleted or H328A-mutant completely abolished their prolonged half-lives irrespective of L-Trp presence or absence, thereby revealing that the exosite is the molecular lynchpin that defines L-Trpmediated TDO induction via protein stabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.