The uniformity improvement of high deposition rate in hydrogenated amorphous silicon (a-Si:H) film deposited by electron cyclotron resonance chemical vapor deposition (ECR-CVD) is very essential for a large substrate in PV solar industry. In order to improve the uniformity in depositing thin film in large area, the auxiliary magnetic coils were designed and installed in ECR-CVD to modify the distribution of magnetic field. In addition, the dependence of the other ECR-CVD processing parameters such as resonance position, microwave power, working pressure, and substrate temperature were investigated. The results indicated that more uniform a-Si:H film could be obtained when working pressure was decreased. By using finite element analysis, it was found that location of turbo pump would impact gas flow field and this effect would become more significant at high pressure. Increasing microwave power, increasing horizontal gradient of the magnetic field to the substrate, and forming Cusp magnetic field could enhance ECR-CVD deposition uniformity greatly. However, the plasma location and substrate temperature were not major factors affecting a-Si:H film uniformity in ECR-CVD process. Finally, the optimal and the best 3.8% in uniformity could be achieved in 150mm diameter when the ratio of magnetic field strength at wafer edge to wafer center is 215%, working pressure is 1.5 mtorr, microwave power density is 4W/cm2, and substrate temperature is 180°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.