Sand filtration is a polishing type of treatment system that is widely used as an efficient, cost-effective and simple treatment method. The efficiency of sand filtration relies mainly on the capacity of sand bed depth. Different sand bed depth affects the filtration rate and the contaminant removal differently. Hence, this study aims to investigate the effect of different sand media depth on the removal efficiency of the filtration process. An experimental sand filter with three design modifications of different sand bed depth, 30 cm, 60 cm, and 90 cm, was operated as polishing stage of an effluent from conventional activated sludge process. The highest filtration rate was recorded using sand depth of 30 cm. Higher filter bed depth result in lower filter rate which result in smaller filtrate volume. Highest E. Coli and COD removal, are 95.5% and 52.2%, respectively, recorded using 30 cm sand depth. Meanwhile, highest TSS and turbidity removal are 91.0% and 77.3%, respectively, with sand depth of 90 cm. Highest total coliform and BOD removal are 88.3% and 68.0% respectively by using sand depth of 60 cm. This study demonstrated that the sand filter is more efficient in removing suspended contaminants and coliforms compared to removing dissolved contaminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.