Vertebrate gastrulation is a critical step in the establishment of body plan. During gastrulation, epithelial-mesenchymal transition (EMT) occurs. EMT is one of the central events of embryonic development, organ and tissue regeneration, and cancer metastasis. Signal transducers and activators of transcription (STATs) mediate biological actions such as cell proliferation, differentiation and survival in response to cytokines and growth factors, in a variety of biological processes. STATs are also important in EMT during gastrulation, organogenesis, wound healing and cancer progression. We previously showed that STAT3 is activated in the organizer during zebrafish gastrulation and its activity is essential for gastrulation movements. The requirement for STAT3 is cell-autonomous for the anterior migration of gastrula organizer cells, and non-cell-autonomous for the convergence of neighbouring cells. The molecular mechanisms of STAT's action in EMT, however, are unknown. Here we identify LIV1, a breast-cancer-associated zinc transporter protein, as a downstream target of STAT3 that is essential and sufficient for STAT3's cell-autonomous role in the EMT of zebrafish gastrula organizer cells. Furthermore, we demonstrate that LIV1 is essential for the nuclear localization of zinc-finger protein Snail, a master regulator of EMT. These results establish a molecular link between STAT3, LIV1 and Snail in EMT.
a b s t r a c tMotA and MotB form the proton-channel complex of the proton-driven bacterial flagellar motor. A plug segment of Escherichia coli MotB suppresses proton leakage through the MotA/B complex when it is not assembled into the motor. Using a ratiometric pH indicator protein, pHluorin, we show that the proton-conductivity of a Salmonella MotA/B complex not incorporated into the motor is two orders of magnitude lower than that of a complex that is incorporated and activated. This leakage is, however, significant enough to change the cytoplasmic pH to a level at which the chemotaxis signal transduction system responds.
Somites in vertebrates are periodic segmented structures that give rise to the vertebrae and muscles of body. Somites are generated from presomitic mesoderm (PSM), but it is not fully understood how cellular differentiation and segment formation are achieved in the anterior PSM. We report here that zebrafish gadd451 and gadd452 genes are periodically expressed as paired stripes adjacent to the neural tube in the anterior PSM region where presomitic cells mature. In mammals, it is known that GADD45 (growth arrest and DNA damage) family proteins play a role in cell-cycle control. We found that both knockdown and overexpression of gadd45 genes caused somite defects with different consequences for marker gene expression. Knockdown of gadd45 genes with antisense morpholino oligonucleotides caused a broad expansion of mesp-a in the PSM, and both cyclic expression of her1 and segmented expression of MyoD were disorganized. On the other hand, injection of gadd451 or gadd452 suppressed expression of mesp-a and her1 in anterior PSM and MyoD in paraxial mesoderm. These results indicate that regulated expression of gadd45 genes in the anterior PSM is required for somite segmentation.presomitic mesoderm ͉ periodicity ͉ patterning ͉ knockdown
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.