In the present study, we used a surface-science approach to establish a functional link between activity and stability of monometallic oxides during the OER in acidic media. We found that the most active oxides (Au ≪ Pt < Ir < Ru ≪ Os) are, in fact, the least stable (Au ≫ Pt > Ir > Ru ≫ Os) materials. We suggest that the relationships between stability and activity are controlled by both the nobility of oxides as well as by the density of surface defects. This functionality is governed by the nature of metal cations and the potential transformation of a stable metal cation with a valence state of n = +4 to unstable metal cation with n > +4. A practical consequence of such a close relationship between activity and stability is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate is neither too fast nor too slow.
The selection of oxide materials for catalyzing the oxygen evolution reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity—a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the activity-stability factor. On the basis of this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factor of ~30 improvement in activity-stability factor relative to conventional iridium-based oxide materials, and an ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. We propose that the activity-stability factor is a key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.
Gelatin extracted from Alaska pollack skin was hydrolyzed with serial digestions in the order of Alcalase, Pronase E, and collagenase using a three-step recycling membrane reactor. The fraction from the second step, which was hydrolyzed with Pronase E, was composed of peptides ranging from 1.5 to 4.5 kDa and showed high antioxidative activity. Two different peptides showing strong antioxidative activity were isolated from the hydrolysate using consecutive chromatographic methods including gel filtration on a Sephadex G-25 column, ion-exchange chromatography on a SP-Sephadex C-25 column, and high-performance liquid chromatography on an ODS column. The isolated peptides, P1 and P2, were composed of 13 and 16 amino acid residues, respectively; and both peptides contained a Gly residue at the C-terminus and the repeating motif Gly-Pro-Hyp. The antioxidative activities of the purified peptides were measured using the thiobarbituric acid method, and the cell viability was measured with MTT assay. The results showed that P2 had potent antioxidative activity on peroxidation of linoleic acid. Moreover, the cell viability of cultured liver cells was significantly enhanced by addition of the peptide. These results indicate that the purified peptide, P2, from gelatin hydrolysate of Alaska pollack skin is a natural antioxidant which has potent antioxidative activity.
The methods used to improve catalytic activity are well-established, however elucidating the factors that simultaneously control activity and stability is still lacking, especially for oxygen evolution reaction (OER) catalysts. Here, by studying fundamental links between the activity and stability of well-characterized monometallic and bimetallic oxides, we found that there is generally an inverse relationship between activity and stability. To overcome this limitation, we developed a new synthesis strategy that is based on tuning the near-surface composition of Ru and Ir elements by surface segregation, thereby resulting in the formation of a nanosegregated domain that balances the stability and activity of surface atoms. We demonstrate that a Ru0.5Ir0.5 alloy synthesized by using this method exhibits four-times higher stability than the best Ru-Ir oxygen evolution reaction materials, while still preserving the same activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.