The time-dependent effect of transcranial direct current stimulation (tDCS) on working memory was investigated by applying anodal stimulation over the left prefrontal cortex. This single-blind, sham-controlled crossover study recruited 15 healthy participants. A three-back verbal working-memory task was performed before, during, and 30 min after 1 mA anodal or sham tDCS. Anodal tDCS, compared with sham stimulation, significantly improved working-memory performance. Accuracy of response was significantly increased after 20 min of tDCS application, and was further enhanced after 30 min of stimulation. This effect was maintained for 30 min after the completion of stimulation. These results suggest that tDCS at 1 mA enhances working memory in a time-dependent manner for at least 30 min in healthy participants.
Repetitive transcranial magnetic stimulation (rTMS) has been studied increasingly in recent years to determine whether it has a therapeutic benefit on recovery after stroke. However, the underlying mechanisms of rTMS in stroke recovery remain unclear. Here, we evaluated the effect of rTMS on functional recovery and its underlying mechanism by assessing proteins associated with neural plasticity and anti-apoptosis in the peri-lesional area using a subacute cerebral ischemic rat model. Twenty cerebral ischemic rats were randomly assigned to the rTMS or the sham group at post-op day 4. A total of 3,500 impulses with 10 Hz frequency were applied to ipsilesional cortex over a 2-week period. Functional outcome was measured before (post-op day 4) and after rTMS (post-op day 18). The rTMS group showed more functional improvement on the beam balance test and had stronger Bcl-2 and weaker Bax expression on immunohistochemistry compared with the sham group. The expression of NMDA and MAP-2 showed no significant difference between the two groups. These results suggest that rTMS in subacute cerebral ischemia has a therapeutic effect on functional recovery and is associated with an anti-apoptotic mechanism in the peri-ischemic area rather than with neural plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.