We present a design optimization of highly transparent glasses with broadband antireflective subwavelength structures (SWS) based on the theoretical calculation using a rigorous coupled wave analysis method. It is found that optical transmission characteristics of SWS integrated glasses are governed mainly by the zero-order condition considering multiple internal reflections but not external reflection. By utilizing parabola-shaped SWS on both sides of the glasses with a period of 200 nm and a height of 200 nm, an average transmittance of 99.58% is achieved over a whole range of visible wavelength. Transmission band shrinkage effects of the SWS integrated glass are also observed with increasing the incident angle of light.
Nano‐tailoring the shape and dimensions of the parabolic antireflective structure predicted by simulation has been successfully carried out to fabricate monolithic high‐performance antireflection (AR) polymer films. The average total reflectivity from an artificial antireflection film is lowered down to 0.64% at a wavelength range of 400 nm to 800 nm, which appears to be the best antireflection performance ever reported for transparent polymer antireflection films.
This study reports highly efficient light-absorbing structures based on submicrometer gratings (SMGs) for thin-film crystalline silicon solar cells. The integration of SMGs into the cell structure leads to superior broadband antireflection properties compared to conventional antireflection coatings. With careful design optimization, an improvement of the cell efficiency of nearly 25.1% was obtained compared to double-layer coated solar cells. Optimized SMG structures were fabricated on a silicon substrate using interference lithography and a lenslike shape transfer process. The fabricated SMG structures exhibited low reflectivity in the wavelength range of 300-1200 nm, indicating good agreement with the simulated results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.