Purpose The paper aims to reduce the low-frequency resonance and residual vibration of the robot during the operation, improve the working accuracy and efficiency. A reduced weight and large load-to-weight ratio can improve the practical application of a collaborative robot. However, flexibility caused by the reduced weight and large load-to-weight ratio leads to low-frequency resonance and residual vibration during the operation of the robot, which reduces the working accuracy and efficiency. The vibrations of the collaborative robot are suppressed using a modified trajectory-planning method. Design/methodology/approach A rigid-flexible coupling dynamics model of the collaborative robot is established using the finite element and Lagrange methods, and the vibration equation of the robot is derived. Trajectory planning is performed with the excitation force as the optimization objective, and the trajectory planning method is modified to reduce the vibration of the collaborative robot and ensure the precision of the robot terminal. Findings The vibration amplitude is reduced by 80%. The maximum torque amplitude of the joint before the vibration suppression reaches 50 N·m. After vibration suppression, the maximum torque amplitude of the joint is 10 N·m, and the resonance phenomenon is eliminated during the operation process. Consequently, the effectiveness of the modified trajectory planning method is verified, where the vibration and residual vibration in the movement of the collaborative robot are significantly reduced, and the positioning accuracy and working efficiency of the robot are improved. Originality/value This method can greatly reduce the vibration and residual vibration of the collaborative robot, improve the positioning accuracy and work efficiency and promote the rapid application and development of collaborative robots in the industrial and service fields.
Aiming at the problem that the vibration of space robot will reduce the dynamic accuracy of robot, a method of vibration suppression of space robot through trajectory planning is proposed. First, the joint was simplified to a linear torsion spring, and the flexible rod was modelled using the finite element method, resulting in a flexible motion model of the robot. Then, a rigid-soft coupled dynamic model that combined the flexible motion model with the Lagrange method was established. Using the dynamic model, the factors influencing the vibration behaviour of space robots were analysed. Finally, the space robot was subjected to vibration suppression through trajectory planning. As verified by experimental analysis, different trajectories and loads affect the excitation force and inherent characteristics of the robot. In the design process, it is necessary to consider the relationship between the excitation force and natural frequency. The trajectory planning method has apparent effects on vibration suppression. The vibration amplitude was significantly reduced, which can improve the positioning accuracy and work efficiency of the robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.