Many studies have focused on the impacts of rainfall duration and intensity, while overlooking the role of rainfall patterns on intensive tillage erosion in hilly agricultural landscapes. The objective of this study was to determine the combined effects of rainfall patterns and tillage erosion on surface runoff and soil loss on sloping farmland in the purple soil area of China. Five simulated rainfall patterns (constant, rising, falling, rising–falling, and falling–rising) with the same total precipitation were designed, and the intensive tillage treatment (IT) and no-tillage treatment (NT) were subjected to simulated rainfall using rectangular steel tanks (2 m × 5 m) with a slope of 15°. To analyse the differences in the hydrological characteristics induced by tillage erosion, we calculated the flow velocity (V), Reynolds number (Re), Froude number (Fr), and Darcy–Weisbach resistance coefficient (f). The results indicate that significant differences in surface runoff and sediment yield were found among different rainfall patterns and rainfall stages (p < 0.05). The falling pattern and falling–rising pattern had a shorter time gap between the rainfall initiation and runoff occurrence as well as a larger sediment yield than those of the other rainfall patterns. The value of f varied from 0.30 to 9.05 for the IT and 0.48 to 11.57 for the NT and exhibited an approximately inverse trend to V and Fr over the course of the rainfall events. Compared with the NT, the mean sediment yield rates from the IT increased the dynamic range of 8.34–16.21% among the different rainfall patterns. The net contributions of the IT ranged from 2.77% to 46.39% in terms of surface runoff and 10.14–78.95% in terms of sediment yield on sloping farmland. The surface runoff and sediment yield were positively correlated with rainfall intensity, V, and Fr, but negatively correlated with f irrespective of tillage operation (p < 0.05). The results showed that the tillage erosion effects on soil and water loss were closely related to rainfall patterns in hilly agricultural landscapes. Our study not only sheds light on the mechanism of tillage erosion and rainfall erosion but also provides useful insights for developing tillage water erosion prediction models to evaluate soil and water loss on cultivated hillslopes.
Many studies have focused on the impacts of rainfall duration and intensity while overlooking the role of rainfall patterns on intensive tillage erosion in hilly agricultural landscapes. The objective of this study was to determine the combined effects of rainfall patterns and intensive tillage erosion on surface runoff and soil loss on sloping farmland in the purple-soil area of China. Five simulated rainfall patterns (constant, rising, falling, rising-falling, and falling-rising) with the same total precipitation were designed, and the intensive tillage erosion treatment (IT) and no-tillage treatment (NT) were subjected to simulated rainfall using rectangular steel tanks (2 m × 5 m) with a slope of 15°. To analyse the differences in the hydrodynamic characteristics induced by tillage erosion, we calculated the flow velocity (V), Reynolds number (Re), Froude number (Fr), and Darcy-Weisbach resistance coefficient (f). The results indicate that significant differences in surface runoff and soil loss were found among different rainfall patterns and stages (P < 0.05). The falling pattern and falling-rising pattern had faster runoff-initiating times and larger sediment yields than those of the other rainfall patterns. f varied from 0.30 to 9.05 for the IT and 0.48 to 11.57 for the NT and exhibited an approximately inverse trend to V and Fr over the course of the rainfall events. Compared with the NT, the mean sediment yield rates from the IT increased the dynamic range of 8.34%–16.21% among different rainfall patterns. The net contributions of the IT ranged from 2.77% to 46.39% on surface runoff and 10.14%–78.95% on soil loss on sloping farmland. Surface runoff and soil loss were positively correlated with rainfall intensity, V, and Fr but negatively correlated with f irrespective of tillage intensive (P < 0.05). For varying-intensity rainfall patterns, soil and water loss fluctuated during rainfall events, suggesting that the changes in rainfall intensity and tillage intensity would result in drastic variations in soil hydrological characteristics and sediment transport mechanisms. The time sequences of rainfall intensity in each rainfall pattern significantly affected surface runoff, soil erosion, and their contribution rates to total soil and water loss. Moreover, tillage erosion effects on soil and water loss were closely related to rainfall patterns in hilly agricultural landscapes. Our study not only sheds light on the mechanism of tillage erosion and rainfall erosion but also provides useful insights for developing tillage-water erosion prediction models to evaluate soil and water loss on cultivated hillslopes.
Surface mounds and depressions are the basic patterns of microtopography. Their geometric forms and physical properties affect rainfall infiltration, runoff generation and runoff confluence process. In this study, soil beds were set up with seven different types of microtopography to study the effects of surface mounds and depressions on runoff. They were the control check (CK), alternate mounds (AM), continuous mounds (CM), alternate depressions (AD), continuous depressions (CD), alternate mounds and depressions (AMD) and continuous mounds and depressions (CMD). There was only one microtopography type for monomorphic surface relief (MSR) while two for compound surface relief (CSR). All soil beds were exposed under 60, 90 or 120 mm/h rainfall intensity for 90 min. The main results are as follows: surface mounds could promote surface runoff, triggering and shortening runoff generation time, while surface depressions showed contrary results. Whether there was an interval between mounds or depressions also affected the characteristics of runoff. The runoff generation time was 3.8–5.0 times higher for continuous slope than for interval slope, while the runoff yield and runoff coefficient both decreased by approximately 40%. CSR can significantly neutralize the flow-promoting effects of the mounds and the flow-inhibiting effects of the depressions, making the runoff yield and runoff process present a neutral state between the mounds and depressions. CSR prolongs runoff generation time from 1–10 min of MSR to 5–16 min. The runoff yield of CSR presented as 0.12, between 0.17 for mounds and 0.10 for depressions, and so did the runoff coefficient and hydrodynamic parameters. In addition, with rainfall intensity increased, the runoff pattern of CSR and MSR became more similar to each other, and the retarding effects of topography on overland flow were more effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.