In this work, the Hopf bifurcation of the main drive delay system of rolling mill is controlled and analyzed by designing a nonlinear controller. The time-delay is selected as a bifurcation parameter, and the following conclusions are obtained through analysis: (1) in the absence of state feedback control, the system will generate the Hopf bifurcation at the expense of its stability when the bifurcation parameter exceeds the threshold value; (2) in the state under feedback control, the occurrence of Hopf bifurcation is effectively delayed and the stable region of the system is also well extended. More importantly, we can change the properties of bifurcation periodic solutions by selecting the appropriate gain parameters. Some numerical simulations reveal that under the nonlinear feedback control, the vibration amplitude of the system can be effectively reduced.
This paper investigates a toxic phytoplankton–zooplankton model with Michaelis–Menten type phytoplankton harvesting. The model has rich dynamical behaviors. It undergoes transcritical, saddle-node, fold, Hopf, fold-Hopf and double Hopf bifurcation, when the parameters change and go through some of the critical values, the dynamical properties of the system will change also, such as the stability, equilibrium points and the periodic orbit. We first study the stability of the equilibria, and analyze the critical conditions for the above bifurcations at each equilibrium. In addition, the stability and direction of local Hopf bifurcations, and the completion bifurcation set by calculating the universal unfoldings near the double Hopf bifurcation point are given by the normal form theory and center manifold theorem. We obtained that the stable coexistent equilibrium point and stable periodic orbit alternate regularly when the digestion time delay is within some finite value. That is, we derived the pattern for the occurrence, and disappearance of a stable periodic orbit. Furthermore, we calculated the approximation expression of the critical bifurcation curve using the digestion time delay and the harvesting rate as parameters, and determined a large range in terms of the harvesting rate for the phytoplankton and zooplankton to coexist in a long term.
A diffusive phytoplankton–zooplankton model with nonlinear harvesting is considered in this paper. Firstly, using the harvesting as the parameter, we get the existence and stability of the positive steady state, and also investigate the existence of spatially homogeneous and inhomogeneous periodic solutions. Then, by applying the normal form theory and center manifold theorem, we give the stability and direction of Hopf bifurcation from the positive steady state. In addition, we also prove the existence of the Bogdanov–Takens bifurcation. These results reveal that the harvesting and diffusion really affect the spatiotemporal complexity of the system. Finally, numerical simulations are also given to support our theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.