Background: Vicatia thibetica de Boiss is a common Tibetan medicine used for both medicine and food, belonging to the family Apiaceae. This plant has the functions of dispelling wind, removing dampness, dispersing cold, and relieving pain. It has great development potential and application prospects in food development and medicinal value. Methods: The related references on botany, traditional uses, phytochemistry, quantitative analysis, and pharmacology of V. thibetica de Boiss had been retrieved from both online and offline databases, including PubMed, ScienceDirect, Web of Science, Elsevier, Willy, SpringLink, SciFinder, Google Scholar, Baidu Scholar, ACS publications, SciHub, Scopus, and CNKI. Results: V. thibetica de Boiss exerts nourishing, appetizing, and digestive effects according to the theory of Tibetan medicine. Phytochemical reports have revealed that V. thibetica de Boiss contains flavonoids, coumarins, sterols, and organic acids. Meanwhile, the quantitative analysis of the chemical constituents of V. thibetica de Boiss has been done by means of UPLC-Q-TOF-MS. It has also been found that V. thibetica de Boiss possesses multiple pharmacological activities, including anti-fatigue, anti-oxidant, anti-aging, and non-toxic activities. Conclusion: This paper has comprehensively summarized botany, traditional uses, phytochemistry, quantitative analysis, and pharmacology of V. thibetica de Boiss. It will not only provide an important clue for further studying V. thibetica de Boiss, but also offer an important theoretical basis and valuable reference for in-depth research and exploitation of this plant in the future.
Genipin has been the focus of research as a multifunctional compound for the treatment of pathogenic diseases. However, hepatotoxicity caused by oral genipin raises concerns about its safety. To obtain novel derivatives with low toxicity and efficacy, we synthesized methylgenipin (MG), a new compound, using structural modification, and investigated the safety of MG administration. The results showed that the LD50 of oral MG was higher than 1000 mg/kg, no mice died or were poisoned during the experiment in the treatment group, and there was no significant difference in biochemical parameters and liver pathological sections compared with the control. Importantly, MG (100 mg/kg/d) treatment for 7 days reduced alpha-naphthylisothiocyanate (ANIT)-induced increases in liver index, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), and total bilirubin (TBIL) levels. Histopathology demonstrated that MG could treat ANIT-induced cholestasis. In addition, using proteomics to investigate the molecular mechanism of MG in the treatment of a liver injury may be related to enhancing antioxidant function. Kit validation showed that ANIT induced an increase in malondialdehyde (MDA) and a decrease in superoxide dismutase (SOD) and glutathione (GSH) levels, while the MG pretreatments, both of which were significantly reversed to some extent, suggested that MG may alleviate ANIT-induced hepatotoxicity by enhancing endogenous antioxidant enzymes and inhibiting oxidative stress injury. In this study, we demonstrate that the treatment of mice with MG does not cause impaired liver function and provide an investigation of the efficacy of MG against ANIT-induced hepatotoxicity, laying the foundation for the safety evaluation and clinical application of MG.
Nonalcoholic Fatty Liver Disease (NAFLD) is a serious problem endangering human health in the world. The pathogenesis of this disease is often accompanied by lipid metabolism disorder and can cause liver lipid accumulation. Highland barley Monascus purpureus Went extract (HBMPWE) can inhibit the liver lipid accumulation caused by a high-fat, high-fructose, high-cholesterol diet. However, it is not clear what changes have taken place in the process of liver lipid metabolism after HBMPWE administration. To fill this knowledge gap and to support the findings published in the companion research article entitled “Highland Barley Monascus purpureus Went Extract Ameliorates High-Fat, High-Fructose, High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease by Regulating Lipid Metabolism in Golden Hamsters” [1] , we provided important information related to the liver differential metabolites and identified twenty-one differential metabolites of liver metabolism. In the model group, the levels of lactate, linoleic acid, and malic acid increased significantly. After HBMPWE treatment, the expressions of these metabolites reduced significantly. Therefore, these liver differential metabolites could be used as biological signatures reflecting the severity of NAFLD and HBMPWE treatment outcomes.
Background: Highland barley Monascus purpureus Went, a traditional Tibetan medicine with food functions, which is fermented by Monascus purpureus with highland barley as substrate. It possesses various medical functions of promoting blood circulation and removing blood stasis, invigorating spleen and promoting digestion in folk of the Qinghai-Tibet Plateau in China. This review provides a comprehensive overview of ethnopharmacology, phytochemistry, and pharmacology of highland barley Monascus purpureus Went. Methods: The references of highland barley Monascus purpureus Went were retrieved from online database, such as Web of Science, Google Scholar, SciFinder, PubMed, SpringLink, Elsevier, Willy, CNKI, and so on. Results: Phytochemical research revealed that highland barley Monascus purpureus Went contained multiple chemical components, including Monascus pigments, monacolins, lactones, and other compounds. The reported pharmacological activities of highland barley Monascus purpureus Went included hypolipidemic, anti-nonalcoholic fatty liver disease, and hepatoprotective activities. Conclusions: In a word, botany, ethnopharmacology, phytochemistry and pharmacology of highland barley Monascus purpureus Went were reviewed comprehensively in this paper. In the future, highland barley Monascus purpureus Went needs further study, such as paying more attention to quality control and utilization on medicine. Therefore, this review may provide a theoretical basis and valuable data for future studies and exploitations on highland barley Monascus purpureus Went.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.