BackgroundThis study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues.MethodsWe propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance.ResultsThe proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues.ConclusionsOur study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.