The feasibility of applying nanoscale TiO2/coconut shell powder (TCNSP) composite to remove HA in aqueous solution was evaluated, and the optimization of the photocatalytic systems using newly developed TCNSP composite was performed. The developed TCNSP composite has high specific surface area (i.e., 454 m2/g) and great porosity (i.e., 66.9%) with pore size of less than 5 μm. High removal efficiencies (≥95%) of HA were observed due to the significant synergistic effects by coupling adsorption and photocatalytic reaction of TCNSP composite. As the initial concentration of HA increased, the degradation rate (Kapp) decreased due to HA sorption saturation to the surface of TCNSP composite and the photon interception by HA molecules in aqueous solution. Since the increased loading amount of TCNSP composite enhanced the number of active sites,Kappvalues increased until the optimum loading amount of TCNSP composite. As pH values increased, HA removal efficiency decreased due to increasing electrostatic repulsion between HA and TCNSP composite. Based on the response surface methodology, higher HA removal efficiencies were obtained with acidic condition, longer reaction time, and appropriated loading amount of TCNSP. Further pilot-scale study is in progress using TCNSP composite combined with UVC to remove HA from large amounts of surface water (i.e., 200 m3/d).
To develop a high-performance shrinkage reducing agent, this study investigated several shrinkage reducing materials and supplements for those materials. Fluidity and air content were satisfactory for the various shrinkage reducing materials. The decrease in viscosity was the lowest for glycol-based materials. The decrease in drying shrinkage was most prominent for mixtures containing glycol-based materials. In particular, mixtures containing G2 achieved a 40% decrease in the amount of drying shrinkage. Most shrinkage reducing materials had weaker level of compressive strength than that of the plain mixture. When 3% triethanolamine was used for early strength improvement, the strength was enhanced by 158% compared to that of the plain mixture on day 1; enhancement values were 135% on day 7 and 113% on day 28. To assess the performance of the developed high-performance shrinkage reducing agent and to determine the optimal amount, 2.0% shrinkage reducing agent was set as 40% of the value of the plain mixture. While the effect was more prominent at higher amounts, to prevent deterioration of the compressive strength and the other physical properties, the recommended amount is less than 2.0%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.