The prediction and monitoring of fetal growth restriction (FGR) fetuses has become with the use of ultrasound. However, these tools lack the fundamental evidence for the growth of fetus with FGR excluding pathogenic factors.Amniotic fluid samples were obtained from pregnant women for fetal karyotyping and genetic diagnosis at 16 to 19 weeks of gestation. For this study, 15 FGR and 9 control samples were selected, and cell-free fetal RNA was isolated from each supernatant of the amniotic fluid for microarray analysis.In this study, 411 genes were differentially expressed between the FGR and control group. Of these genes, 316 genes were up-regulated, while 95 genes were down-regulated. In terms of gene ontology, the up-regulated genes were highly related to metabolic process as well as protein synthesis, while the down-regulated genes were related to receptor activity and biological adhesion. In terms of tissue-specific expression, the up-regulated genes were involved in various organs while down-regulated genes were involved only in the brain. In terms of organ-specific expression, many genes were enriched for B-cell lymphoma, pancreas, eye, placenta, epithelium, skin, and muscle. In the functional significance of gene, low-density lipoprotein receptor-related protein 10 (LRP10) was significantly increased (6-fold) and insulin-like growth factor (IGF-2) was dramatically increased (17-fold) in the FGR cases.The results show that the important brain-related genes are predominantly down-regulated in the intrauterine growth restriction fetuses during the second trimester of pregnancy. This study also suggested possible genes related to fetal development such as B-cell lymphoma, LRP10, and IGF-2. To monitor the fetal development, further study may be needed to elucidate the role of the genes identified.
DNA methylation is an important epigenetic mark that regulates gene expression. Dnmt1 plays an important role in maintaining DNA methylation patterns on daughter DNA strands. Studies have shed light into the functional role of Dnmt1 regulation in the hematopoietic and epidermal systems. Here we show that Dnmt1 is required for myogenesis. Loss of Dnmt1 results in reduced expression of myogenic genes and defects in myogenic differentiation. We have utilized a conditional knockout mouse approach to examine the functional consequences of Dnmt1 depletion specifically in the developing muscle. These mice were born runted, with smaller body weights, and reduced ability to form myotubes in vitro. We show that expression of Id-1, a negative regulator of myogenesis, is enhanced in Dnmt1-deficient cultures, leading to enhanced transdifferentiation of myoblasts toward the osteogenic lineage. Thus, these studies demonstrate that Dnmt1 influences cellular identity and determines lineage fidelity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.