Many physical and chemical problems in solid oxide fuel cells (SOFC) are induced by the operating temperature of approximately 800 ~ 1000°C. The focus of the research in SOFC’s is, thus, on running the systems at the intermediate operating temperature range below 800 °C. A way to achieve this includes changing the electrolyte material in order to get a good ionic conductivity in the intermediate temperature range below 800 °C. In this work, gadolinium doped ceria is selected as the electrolyte, which was mixed with NiO for the anode material, and tape cast and laminated to produce a novel graded IT-SOFC . The cross-section of the SOFC cell was observed using Scanning Electron Microscope (SEM) showing a dense electrolyte layer. The operating temperature to test the cell was 500 and 550 °C. The electrochemical properties of the cell were measured using impedance spectroscopy. The ASR of unit cells was found to be between 2.67 and 4.62 Ω∙cm2. The electrochemical performance is discussed under the effect of porosity gradients at 500 and 550 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.