BackgroundThe long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) has been reported to be overexpressed in colorectal cancer (CRC). However, its underlying mechanisms in the progression of CRC have not been well studied.MethodsTo investigate the clinical significance of NEAT1, we analyzed its expression levels in a publicly available dataset and in 71 CRC samples from Fudan University Shanghai Cancer Center. Functional assays, including the CCK8, EdU, colony formation, wound healing, and Transwell assays, were used to determine the oncogenic role of NEAT1 in human CRC progression. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and Dual-Luciferase Reporter Assays were used to determine the mechanism of NEAT1 in CRC progression. Animal experiments were used to determine the role of NEAT1 in CRC tumorigenicity and metastasis in vivo.ResultsNEAT1 expression was significantly upregulated in CRC tissues compared with its expression in normal tissues. Altered NEAT1 expression led to marked changes in proliferation, migration, and invasion of CRC cells both in vitro and in vivo. Mechanistically, we found that NEAT1 directly bound to the DDX5 protein, regulated its stability, and sequentially activated Wnt signaling. Our study showed that NEAT1 indirectly activated the Wnt/β-catenin signaling pathway via DDX5 and fulfilled its oncogenic functions in a DDX5-mediated manner. Clinically, concomitant NEAT1 and DDX5 protein levels negatively correlated with the overall survival and disease-free survival of CRC patients.ConclusionsOur findings indicated that NEAT1 activated Wnt signaling to promote colorectal cancer progression and metastasis. The NEAT1/DDX5/Wnt/β-catenin axis could be a potential therapeutic target of pharmacological strategies.Electronic supplementary materialThe online version of this article (10.1186/s13045-018-0656-7) contains supplementary material, which is available to authorized users.
Serum biomarkers have not been fully incorporated into clinical use for the diagnosis of renal cell carcinoma (RCC). The recent discovery of long noncoding RNAs (lncRNAs), which have been reported in a variety of cancer types, suggested a promising new class of biomarkers for tumour diagnosis. The aim of our study was to evaluate whether the levels of circulating lncRNAs could be used as a tumour marker to discriminate between clear cell RCC (ccRCC) patients and healthy controls. Serum samples were collected from 71 ccRCC patients including 62 age- and sex-matched healthy controls and 8 patients with benign renal tumours. Eighty-two cancer-associated lncRNAs were assessed by reverse transcription and quantitative polymerase chain reaction in paired tissues and serum. A 5-lncRNA signature, including lncRNA-LET, PVT1, PANDAR, PTENP1 and linc00963, were identified and validated in the training set and testing set, respectively. The receiver operating characteristic curves for this serum 5-lncRNA signature were 0.900 and 0.823 for the two sets of serum samples. Moreover, five-minus-one lncRNA signatures demonstrated that none of the lncRNAs had a higher area under the curve than the others in either set. A risk model for the serum 5-lncRNA signature also determined that benign renal tumours can be distinguished from ccRCC samples. This work may facilitate the detection of ccRCC and serve as the basis for further studies of the clinical value of serum lncRNAs in maintaining surveillance and forecasting prognosis.
Although PD-L1 has been shown to play a well-characterized role in inhibiting antitumor immunity via engagement of its receptor PD-1 in T lymphocytes, little is known about the tumor cell-intrinsic function of PD-L1 and its association with prognosis. Here, we investigate this issue and dissect the molecular mechanisms underlying the role of PD-L1 in glucose metabolism, proliferation, migration, and invasion in human cervical cancer cells. As a result, we found that PD-L1 overexpression in cervical cancer cells increases glucose metabolism and metastasis-related behaviors. Mechanistically, PD-L1 bound directly to integrin β4 (ITGB4), activating the AKT/GSK3β signaling pathway and consequently inducing the expression of the transcriptional repressor SNAI1. SNAIL in turn influenced the expression of genes involved in the epithelial-to-mesenchymal transition and regulated glucose metabolism by inhibiting SIRT3 promoter activity. High expression of PD-L1 and ITGB4 in human cervical carcinomas was significantly associated with lymph node metastasis and poor prognosis. Finally, F-fluorodeoxyglucose microPET/CT and bioluminescence imaging analyses of cervical xenograft tumors in mice revealed that PD-L1 overexpression markedly increases tumor glucose uptake and promotes lymph node metastasis. Together, these results demonstrate that PD-L1 can promote the growth and metastasis of cervical cancer by activating the ITGB4/SNAI1/SIRT3 signaling pathway, and also suggest the possibility of targeting PD-L1 and its downstream effectors as a potential approach for interfering with cervical cancer growth and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.