The appearance of generative adversarial networks (GAN) provides a new approach and framework for computer vision. Compared with traditional machine learning algorithms, GAN works via adversarial training concept and is more powerful in both feature learning and representation. GAN also exhibits some problems, such as non-convergence, model collapse, and uncontrollability due to high degree of freedom. How to improve the theory of GAN and apply it to computer-vision-related tasks have now attracted much research efforts. In this paper, recently proposed GAN models and their applications in computer vision are systematically reviewed. In particular, we firstly survey the history and development of generative algorithms, the mechanism of GAN, its fundamental network structures, and theoretical analysis of the original GAN. Classical GAN algorithms are then compared comprehensively in terms of the mechanism, visual results of generated samples, and Frechet Inception Distance. These networks are further evaluated from network construction, performance, and applicability aspects by extensive experiments conducted over public datasets. After that, several typical applications of GAN in computer vision, including high-quality samples generation, style transfer, and image translation, are examined. Finally, some existing problems of GAN are summarized and discussed and potential future research topics are forecasted. INDEX TERMS Deep learning, generative adversarial networks (GAN), computer vision (CV), image generation, style transfer, image inpainting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.