The search for large-gap quantum spin Hall (QSH) insulators and effective approaches to tune QSH states is important for both fundamental and practical interests. Based on first-principles calculations we find two-dimensional tin films are QSH insulators with sizable bulk gaps of 0.3 eV, sufficiently large for practical applications at room temperature. These QSH states can be effectively tuned by chemical functionalization and by external strain. The mechanism for the QSH effect in this system is band inversion at the Γ point, similar to the case of a HgTe quantum well. With surface doping of magnetic elements, the quantum anomalous Hall effect could also be realized.
The valley degree of freedom in layered transition-metal dichalcogenides provides an opportunity to extend the functionalities of spintronics and valleytronics devices. The achievement of spin-coupled valley polarization induced by the non-equilibrium charge-carrier imbalance between two degenerate and inequivalent valleys has been demonstrated theoretically and by optical experiments. However, the generation of a valley and spin current with the valley polarization in transition-metal dichalcogenides remains elusive. Here we demonstrate a spin-coupled valley photocurrent, within an electric-double-layer transistor based on WSe2, whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further modulated with an external electric field. This room-temperature generation and electric control of a valley and spin photocurrent provides a new property of electrons in transition-metal dichalcogenide systems, and thereby enables additional degrees of control for quantum-confined spintronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.