During each cell cycle, the yeast vacuole actively partitions between mother and daughter cells. This process requires actin, profilin, an unconventional myosin (Myo2p), and Vac8p. A mutant yeast strain, vac8, is defective in vacuole inheritance, specifically, in early vacuole migration. Vac8p is a 64-kD protein found on the vacuole membrane, a site consistent with its role in vacuole inheritance. Both myristoylation and palmitoylation are required for complete Vac8p localization. Interestingly, whereas myristoylation of Vac8p is not required for vacuole inheritance, palmitoylation is essential. Thus, palmitoylation appears to play a more direct role in vacuole inheritance. Most of the VAC8 sequence encodes 11 armadillo (Arm) repeats. Arm repeats are thought to mediate protein–protein interactions, and many Arm proteins have multiple functions. This is also true for Vac8p. In addition to its role in early vacuole inheritance, Vac8p is required to target aminopeptidase I from the cytoplasm to the vacuole. Mutant analysis demonstrates that Vac8p functions separately in these two processes. Vac8p cosediments with actin filaments. Vac8p is related to β-catenin and plakoglobin, which connect a specific region of the plasma membrane to the actin cytoskeleton. In analogy, Vac8p may link the vacuole to actin during vacuole partitioning.
The discovery of molecules required for membrane fusion has revealed a remarkably conserved mechanism that centers upon the formation of a complex of SNARE proteins. However, whether the SNARE proteins or other components catalyze the final steps of membrane fusion in vivo remains unclear. Understanding this last step depends on the identification of molecules that act late in the fusion process. Here we demonstrate that in Saccharomyces cerevisiae, Vac8p, a myristoylated and palmitoylated armadillo repeat protein, is required for homotypic vacuole fusion. Vac8p is palmitoylated during the fusion reaction, and the ability of Vac8p to be palmitoylated appears to be necessary for its function in fusion. Both in vivo and in vitro analyses show that Vac8p functions after both Rab-dependent vacuole docking and the formation of trans-SNARE pairs. We propose that Vac8p may bind the fusion machinery through its armadillo repeats and that palmitoylation brings this machinery to a specialized lipid domain that facilitates bilayer mixing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.