Intercalation-type TiNbO (x = 2, 5, and 24) anode materials have recently become more interesting for lithium-ion batteries (LIBs) due to their large theoretical capacities of 388-402 mAh g. However, the Ti/Nb ions in TiNbO with empty 3d/4d orbitals usually lead to extremely low electronic conductivity of <10 S cm, greatly restricting their practical capacity and rate capability. Herein, we report a class of highly conductive CrNbO nanowires as an intercalation-type anode material for high-performance LIBs. The as-made CrNbO nanowires show an open shear ReO crystal structure (C2 space group) with 4% tetrahedra and a conducting characteristic with ultrahigh electronic conductivity of 3.6 × 10 S cm and a large Li-ion diffusion coefficient of 2.19 × 10 cm s. These important characteristics make them deliver outstanding electrochemical properties in term of the largest reversible capacity (344 mAh g at 0.1 C) in all the known niobium- and titanium-based anode materials, safe working potential (∼1.65 V vs Li/Li), high first-cycle Coulombic efficiency (90.8%), superior rate capability (209 mAh g at 30 C), and excellent cycling stability, making them among the best for LIBs in niobium- and titanium-based anode materials.
Anatase hierarchical TiO2 with innovative designs (hollow microspheres with exposed high-energy {001} crystal facets, hollow microspheres without {001} crystal facets, and solid microspheres without {001} crystal facets) were synthesized via a one-pot hydrothermal method and characterized. Based on these materials, gas sensors were fabricated and used for gas-sensing tests. It was found that the sensor based on hierarchical TiO2 hollow microspheres with exposed high-energy {001} crystal facets exhibited enhanced acetone sensing properties compared to the sensors based on the other two materials due to the exposing of high-energy {001} crystal facets and special hierarchical hollow structure. First-principle calculations were performed to illustrate the sensing mechanism, which suggested that the adsorption process of acetone molecule on TiO2 surface was spontaneous, and the adsorption on high-energy {001} crystal facets would be more stable than that on the normally exposed {101} crystal facets. Further characterization indicated that the {001} surface was highly reactive for the adsorption of active oxygen species, which was also responsible for the enhanced sensing performance. The present studies revealed the crystal-facets-dependent gas-sensing properties of TiO2 and provided a new insight into improving the gas sensing performance by designing hierarchical hollow structure with special-crystal-facets exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.