Developing high-performance electrocatalysts for the ethanol oxidation reaction (EOR) is critical to the commercialization of direct ethanol fuel cells. However, current EOR catalysts suffer from high cost, low activity, and poor durability. Here we report the preparation of PdBi-Bi(OH) 3 composite nanochains with outstanding EOR activity and durability. The incorporation of Bi can tune the electronic structure and downshift the d-band center of Pd while the surface decoration of Bi(OH) 3 can facilitate the oxidative removal of CO and other carbonaceous intermediates. As a result, the nanochains manifest an exceptional mass activity (5.30 A mg Pd −1 , 4.6-fold higher than that of commercial Pd/C) and outstanding durability (with a retained current density of ∼1.00 A mg Pd −1 after operating for 20 000 s). More importantly, the nanochain catalyst can be reactivated, and negligible activity loss has been observed after operating for 200 000 s with periodic reactivation, making it one of the best EOR catalysts.
Background Circular RNAs (circRNAs) have been reported to have critical regulatory roles in tumor biology. However, their contribution to melanoma remains largely unknown. Methods CircRNAs derived from oncogene CD151 were detected and verified by analyzing a large number of melanoma samples through quantitative real-time polymerase chain reaction (qRT-PCR). Melanoma cells were stably transfected with lentiviruses using circ_0020710 interference or overexpression plasmid, and then CCK-8, colony formation, wound healing, transwell invasion assays, and mouse xenograft models were employed to assess the potential role of circ_0020710. RNA immunoprecipitation, luciferase reporter assay and fluorescence in situ hybridization were used to evaluate the underlying mechanism of circ_0020710. Results Our findings indicated that circ_0020710 was generally overexpressed in melanoma tissues, and high level of circ_0020710 was positively correlated with malignant phenotype and poor prognosis of melanoma patients. Elevated circ_0020710 promoted melanoma cell proliferation, migration and invasion in vitro as well as tumor growth in vivo. Mechanistically, we found that high level of circ_0020710 could upregulate the CXCL12 expression via sponging miR-370-3p. CXCL12 downregulation could reverse the malignant behavior of melanoma cells conferred by circ_0020710 over expression. Moreover, we also found that elevated circ_0020710 was correlated with cytotoxic lymphocyte exhaustion, and a combination of AMD3100 (the CXCL12/CXCR4 axis inhibitor) and anti-PD-1 significantly attenuated tumor growth. Conclusions Elevated circ_0020710 drives tumor progression via the miR-370-3p/CXCL12 axis, and circ_0020710 is a potential target for melanoma treatment.
Metastasis to the liver is a main factor in colorectal cancer mortality. Previous studies suggest that chronic psychological stress is important in cancer progression, but its effect on liver metastasis has not been investigated. To address this, we established a liver metastasis model in BALB/c nude mice to investigate the role of chronic stress in liver metastasis. Our data suggest that chronic stress elevates catecholamine levels and promotes liver metastasis. Chronic stress was also associated with increased tumor associated macrophages infiltration into the primary tumor and increased the expression of metastatic genes. Interestingly, β-blocker treatment reversed the effects of chronic stress on liver metastasis. Our results suggest the β-adrenergic signaling pathway is involved in regulating colorectal cancer progression and liver metastasis. Additionally, we submit that adjunctive therapy with a β-blocker may complement existing colorectal cancer therapies.
Both the patient risk model and the nodule risk model, developed for the early diagnosis of lung cancer, demonstrated excellent discrimination, allowing for the stratification of patients with different levels of lung cancer risk. These new models are applicable in high-risk Chinese populations. Cancer 2018;124:262-70. © 2017 American Cancer Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.