Abstract. There is currently no glacial lake inventory data set for
the entire high-mountain Asia (HMA) area. The definition and classification
of glacial lakes remain controversial, presenting certain obstacles to
extensive utilization of glacial lake inventory data. This study integrated
glacier inventory data and 668 Landsat TM, ETM+, and OLI images and adopted
manual visual interpretation to extract glacial lake boundaries within a
10 km buffer from glacier extent using ArcGIS and ENVI software, normalized
difference water index maps, and Google Earth images. The theoretical and
methodological basis for all processing steps including glacial lake
definition and classification, lake boundary delineation, and uncertainty
assessment is discussed comprehensively in the paper. Moreover, detailed
information regarding the coding, location, perimeter and area, area error,
type, time phase, source image information, and subregions of the located
lakes is presented. It was established that 27 205 and 30 121 glacial lakes
(size 0.0054–6.46 km2) in HMA covered a combined area of 1806.47±2.11 and 2080.12±2.28 km2 in 1990 and 2018,
respectively. The data set is now available from the National Special
Environment and Function of Observation and Research Stations Shared Service
Platform (China): https://doi.org/10.12072/casnw.064.2019.db (Wang et al., 2019a).
The brown planthopper, Nilaparvata lugens, is an economically important pest on rice in Asia. Chemical control is still the most efficient primary way for rice planthopper control. However, due to the intensive use of insecticides to control this pest over many years, resistance to most of the classes of chemical insecticides has been reported. In this article, we report on the status of eight insecticides resistance in Nilaparvata lugens (Stål) collected from China over the period 2012–2016. All of the field populations collected in 2016 had developed extremely high resistance to imidacloprid, thiamethoxam, and buprofezin. Synergism tests showed that piperonyl butoxide (PBO) produced a high synergism of imidacloprid, thiamethoxam, and buprofezin effects in the three field populations, YA2016, HX2016, and YC2016. Functional studies using both double-strand RNA (dsRNA)-mediated knockdown in the expression of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster showed that CYP6ER1 confers imidacloprid, thiamethoxam and buprofezin resistance. These results will be beneficial for effective insecticide resistance management strategies to prevent or delay the development of insecticide resistance in brown planthopper populations.
[1] We present a new random walk model for bed load sediment transport that explains the scale-dependency generally observed in transport rates and captures the transient anomalous dispersion often seen in rivers. Particles alternate between mobile and resting phases, with a tempered stable probability distribution for both particle step length and resting time. Tempered fractional mobile-immobile differential equations model the ensemble average of particle dynamics. The model is tested against data from three sediment dispersion experiments. Using tempering in both space and time, the new model is able to capture the full range of observed ensemble particle dynamics. The random walk model illuminates the physical meaning of all transport parameters in the mobile-immobile equations and explains transitions between observed super-diffusive, sub-diffusive, and regular diffusive ensemble particle dynamics. By explicitly predicting the effects of spatial and temporal averaging on particle dynamics, this method can be used to link observations of fluvial sediment dynamics across scales. This approach is also generally applicable to a wide variety of geophysical and ecological dynamics, such as ecological dispersal, pathogen transmission in rivers, nutrient export from watersheds, and large-scale geomorphodynamics associated with infrequent phenomena such as avalanches and turbidity currents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.