To overcome the problems of coverage blind areas and coverage redundancy when sensor nodes are deployed randomly in heterogeneous wireless sensor networks (HWSNs). An optimal coverage method for HWSNs based on an improved social spider optimization (SSO) algorithm is proposed, which can reduce the energy consumption and improve the network coverage. First, a mathematical model of HWSN coverage is established, which is a complex combinatorial optimization problem. To improve the global convergence speed of the proposed algorithm, a chaotic initialization method is used to generate the initial population. In addition, the SSO algorithm has a poor convergence speed and search ability, which is enhanced by improving the neighborhood search, global search, and matching radius. In the iterative optimization process, the optimal solution is ultimately obtained by simulating the movement law of the spider colony, i.e., according to the cooperation, mutual attraction, and mating process of female and male spiders. An improved SSO algorithm based on chaos, namely the CSSO algorithm, is proposed to apply to the optimal deployment of sensory nodes in HWSNs. On this basis, the optimization goals are to improve the network coverage and reduce network costs. The optimal deployment plan of nodes is searched via the proposed CSSO algorithm, which effectively prevents coverage blind spots and coverage redundancy in the network.
In view of the problems of the connection weights and thresholds of the extreme learning machine are randomly generated before training and remain unchanged during the training process, the number of hidden layer nodes is pre-allocated, and the hidden layer parameters are randomly selected. Too many hidden layer nodes not only make the network more complex but also reduce the generalization ability of the algorithm. Aiming at this problem, an improved crow search algorithm is proposed to optimize the extreme learning machine. Based on the analysis of the limitations of the original crow search algorithm, a particle swarm algorithm search strategy is proposed to enhance the global search capability. In the latter part of the algorithm iteration, Gaussian function is added, and the penalty coefficient of the function is used for local disturbance, gradually reducing the amplitude of the search trajectory, and then adaptively adjusting the parameters to avoid being attracted by local extremum. Finally, the improved crow search algorithm is used to optimize the hidden layer neurons and connection weights of the extreme learning machine neural network, so as to obtain accurate prediction results. Through function fitting, regression data set fitting and classification data set for classification experiment verification, the proposed algorithm has higher training speed and efficiency. At the same time, this method is not only significantly higher than the traditional ELM method, but also obtains a more compact network structure, which is an effective neural network optimization algorithm.
The coverage optimization problem of wireless sensor network has become one of the hot topics in the current field. Through the research on the problem of coverage optimization, the coverage of the network can be improved, the distribution redundancy of the sensor nodes can be reduced, the energy consumption can be reduced, and the network life cycle can be prolonged, thereby ensuring the stability of the entire network. In this paper, a novel grey wolf algorithm optimized by simulated annealing is proposed according to the problem that the sensor nodes have high aggregation degree and low coverage rate when they are deployed randomly. Firstly, the mathematical model of the coverage optimization of wireless sensor networks is established. Secondly, in the process of grey wolf optimization algorithm, the simulated annealing algorithm is embedded into the grey wolf after the siege behavior ends and before the grey wolf is updated to enhance the global optimization ability of the grey wolf algorithm and at the same time improve the convergence rate of the grey wolf algorithm. Simulation experiments show that the improved grey wolf algorithm optimized by simulated annealing is applied to the coverage optimization of wireless sensor networks. It has better effect than particle swarm optimization algorithm and standard grey wolf optimization algorithm, has faster optimization speed, improves the coverage of the network, reduces the energy consumption of the nodes, and prolongs the network life cycle.
In the clustering routing protocol, prolonging the lifetime of the sensor network depends to a large extent on the rationality of the cluster head node selection. The selection of cluster heads for heterogeneous wireless sensor networks (HWSNs) does not consider the remaining energy of the current nodes and the distribution of nodes, which leads to an imbalance of network energy consumption. A strategy for selecting cluster heads of HWSNs based on the improved sparrow search algorithm- (ISSA-) optimized self-organizing maps (SOM) is proposed. In the stage of cluster head selection, the proposed algorithm establishes a competitive neural network model at the base station and takes the nodes of the competing cluster heads as the input vector. Each input vector includes three elements: the remaining energy of the node, the distance from the node to the base station, and the number of neighbor nodes of the node. The best cluster head is selected through the adaptive learning of the improved competitive neural network. When selecting the cluster head node, comprehensively consider the remaining energy, the distance, and the number of times the node becomes a cluster head and optimize the cluster head node selection strategy to extend the network life cycle. Simulation experiments show that the new algorithm can reduce the energy consumption of the network more effectively than the basic competitive neural network and other algorithms, balance the energy consumption of the network, and further prolong the lifetime of the sensor network.
For the sensing layer of the Internet of Things, the mobile wireless sensor network has problems such as limited energy of the sensor nodes, unbalanced energy consumption, unreliability, and long transmission delay in the data collection process. It is proved by mathematical derivation and theory that this is a typical multiobjective optimization problem. In this paper, the optimization goal is to minimize the energy consumption and improve the reliability under time-delay constraints and propose a path optimization mechanism to optimize the mobile Sink of mobile wireless sensor networks based on the improved dragonfly optimization algorithm. The algorithm takes full advantage of the abundant storage space, sufficient energy, and strong computing power of the mobile Sink to ensure network connectivity and improve network communication efficiency. Through simulation comparison and analysis, compared with random movement method, artificial bee colony algorithm, and basic dragonfly optimization algorithm, the energy consumption of the network is reduced, the lifespan of the network is increased, and the connectivity and transmission delay of the network are improved. The proposed algorithm balances the energy consumption of the sensors nodes to meet the network service quality and improve the reliability of the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.