An organically modified montmorillonite was compounded with ethylene vinyl acetate copolymer (EVA), low density polyethylene (LDPE), and high density polyethylene (HDPE) in a twin‐screw extruder. The resulting organoclay‐polyethylene nanocomposites were then blown into films. Tensile properties and oxygen permeability of these nanocomposite films were investigated to understand the effects of organoclay on different types of polyethylene. It was found that the clay enhancing effects are function of the matrix. The mechanical and oxygen barrier properties of clay/EVA systems increased with clay loading. Both the tensile modulus and oxygen barrier of EVA doubled at 5 wt% clay. Maleic anhydride grafted polyethylene (MAPE) usually is used as a compatibilizer for LDPE and HDPE‐based nanocomposites. However, the MAPEs were found to weaken the oxygen barrier of the PEs, especially for HDPE. This is believed to be a result of less compactness caused by the large side groups and the increase in polarity of the MAPEs. Incorporating 5 wt% clay improves the oxygen barrier by 30% and the tensile modulus by 37% for the LDPE/MAPE system. Incorporation of clay does not enhance the properties of the HDPE‐based systems, likely due to large domain structure and poor bonding. Halpin–Tsai equation and the tortuous path equation were used to model the tensile modulus and oxygen permeability of the clay/EVA nanocomposite films. POLYM. ENG. SCI., 47:1101–1107, 2007. © 2007 Society of Plastics Engineers
Ion is one of the most common additives that can impart electrical conductivity to insulating hydrogels. The concurrent toughening effect of ions, however, is often neglected. This work reports the extreme toughening of hydrogels via the synergistic effect of cations and anions, without the need for specific structure design or adding other reinforcements. The strategy is to equilibrate a physical double network hydrogel consisting of both multivalent cation-and kosmotropic anion-sensitive polymers in specific salt solutions that can induce cross-linking and salting-out simultaneously. Both effects are proven positive to boost the mechanical performance and electrical conductivity of the original weak gel, and result in a tough conductive gel with exceptional physical properties, achieving significant enhancements in fracture stress, fracture energy, and ionic conductivity by up to 530-, 1100-, and 4.9-folds, respectively. The optimal fracture stress and toughness reach approximately 15 MPa and 39 kJ m -2 , exceeding most state-of-the-art tough conductive hydrogels. Meanwhile, a satisfactory ionic conductivity of 1.5 S m -1 is attained. The presented simple strategy is also found generalizable to other salt ions and polymers, which is expected to expand the applicability of hydrogels to conditions involving demanding mechanical durability.
Realizing tough adhesion between hydrogels and solid surfaces is crucial for developing emerging soft-rigid hybrid devices with a high level of complexity. However, this is extremely challenging for numerous non-adhesive...
Double-network gels are a class of tough soft materials comprising two elastic networks with contrasting structures. The formation of a large internal damage zone ahead of the crack tip by the rupturing of the brittle network accounts for the large crack resistance of the materials. Understanding what determines the damage zone is the central question of the fracture mechanics of double-network gels. In this work, we found that at the onset of crack propagation, the size of necking zone, in which the brittle network breaks into fragments and the stretchable network is highly stretched, distinctly decreases with the increase of the solvent viscosity, resulting in a reduction in the fracture toughness of the material. This is in sharp contrast to the tensile behavior of the material that does not change with the solvent viscosity. This result suggests that the dynamics of stretchable network strands, triggered by the rupture of the brittle network, plays a role. To account for this solvent viscosity effect on the crack initiation, a delayed blunting mechanism regarding the polymer dynamics effect is proposed. The discovery on the role of the polymer dynamic adds an important missing piece to the fracture mechanism of this unique material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.