Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an essential negative regulator of T cell immune responses whose mechanism of action is the subject of debate. CTLA-4 shares two ligands (CD80 and CD86) with a stimulatory receptor, CD28. Here, we show that CTLA-4 can capture its ligands from opposing cells by a process of trans-endocytosis. After removal, these costimulatory ligands are degraded inside CTLA-4-expressing cells, resulting in impaired costimulation via CD28. Acquisition of CD86 from antigen-presenting cells is stimulated by T cell receptor engagement and observed in vitro and in vivo. These data reveal a mechanism of immune regulation in which CTLA-4 acts as an effector molecule to inhibit CD28 costimulation by the cell-extrinsic depletion of ligands, accounting for many of the known features of the CD28-CTLA-4 system.
The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has potent immunomodulatory properties that have promoted its potential use in the prevention and treatment of infectious disease and autoimmune conditions. A variety of immune cells, including macrophages, dendritic cells and activated T cells express the intracellular vitamin D receptor (VDR) and are responsive to 1,25(OH)2D3. Despite this, how 1,25(OH)2D3 regulates adaptive immunity remains unclear, and may involve both direct and indirect effects on the proliferation and function of T cells. To further clarify this issue we have assessed the effects of 1,25(OH)2D3 on human CD4+ CD25− T cells. We observed that stimulation of CD4+ CD25− T cells in the presence of 1,25(OH)2D3 inhibited production of pro-inflammatory cytokines including IFN- γ, IL-17 and IL-21 but did not substantially affect T cell division. In contrast to its inhibitory effects on inflammatory cytokines, 1,25(OH)2D3 stimulated expression of high levels of CTLA-4 as well as FoxP3, the latter requiring the presence of IL-2. T cells treated with 1,25(OH)2D3 could suppress proliferation of normally responsive T cells indicating that they possessed characteristics of adaptive Tregs. Our results suggest that 1,25(OH)2D3 and IL-2 have direct synergistic effects on activated T cells, acting as potent anti-inflammatory agents and physiologic inducers of adaptive Tregs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.