Accurate in situ leaf area index (LAI) estimates of forest plots are required to validate currently-used LAI map products. Woody-to-total area ratio ( α ) is a crucial parameter in converting the plant area index estimates of forest plots obtained by optical methods into LAI. Although optical methods for estimating the α of forest canopy have been proposed, their performance has never been assessed. In this study, five Larix gmelinii Rupr. forest plots with contrasting plot characteristics (i.e., tree age, tree height, management activities, stand density, and site conditions) were selected. The performance of two commonly used optical methods, namely, multispectral canopy imager (MCI) and digital hemispherical photography (DHP), in estimating the α of L. gmelinii forest plots was evaluated by using the reference α of the selected forest plots. The reference α of forest plots was measured via destructive method by harvesting two or three representative trees in each plot. Large variations were observed amongst the reference α of the selected forest plots (ranging from 0% to 56%). These α were also highly correlated with the site conditions and management activities in these plots. The effective α ( α e ) or α estimated using the leaf-on and leaf-off periods MCI or DHP images with or without consideration of the clumping effects of canopy element and woody components were 1.57 to 4.63 times the reference α in the five plots. The overestimation of α or α e was mainly caused by the preferential shading of woody components by the shoots in the leaf-on canopy. Accurate α estimates for the L. gmelinii forest plots with errors of less than 20% can be obtained from MCI when the clumping effects of canopy element and woody components are considered in the estimation.
Optical methods are frequently used as a routine method to obtain the elementary sampling unit (ESU) leaf area index (LAI) of forests. However, few studies have attempted to evaluate whether the ESU LAI obtained from optical methods matches the accuracy required by the LAI map product validation community. In this study, four commonly used optical methods, including digital hemispherical photography (DHP), digital cover photography (DCP), tracing radiation of canopy and architecture (TRAC) and multispectral canopy imager (MCI), were adopted to estimate the ESU (25 m × 25 m) LAI of five Larix principis-rupprechtii forests with contrasting structural characteristics. The impacts of three factors, namely, inversion model, canopy element or woody components clumping index ( Ω e or Ω w ) algorithm, and the woody components correction method, on the ESU LAI estimation of the four optical methods were analyzed. Then, the LAI derived from the four optical methods was evaluated using the LAI obtained from litter collection measurements. Results show that the performance of the four optical methods in estimating the ESU LAI of the five forests was largely affected by the three factors. The accuracy of the LAI obtained from the DHP and MCI strongly relied on the inversion model, the Ω e or Ω w algorithm, and the woody components correction method adopted in the estimation. Then the best Ω e or Ω w algorithm, inversion model and woody components correction method to be used to obtain the ESU LAI of L. principis-rupprechtii forests with the smallest root mean square error (RMSE) and mean absolute error (MAE) were identified. Amongst the three typical woody components correction methods evaluated in this study, the woody-to-total area ratio obtained from the destructive measurements is the most effective method for DHP to derive the ESU LAI with the smallest RMSE and MAE. In contrast, using the woody area index obtained from the leaf-off DHP or DCP images as the woody components correction method would result in a large LAI underestimation. TRAC and MCI outperformed DHP and DCP in the ESU LAI estimation of the five forests, with the smallest RMSE and MAE. All the optical methods, except DCP, are qualified to obtain the ESU LAI of L. principis-rupprechtii forests with an MAE of <20% that is required by the global climate observation system. None of the optical methods, except TRAC, show the potential to obtain the ESU LAI of L. principis-rupprechtii forests with an MAE of <5%.
Background Digital hemispherical photography (DHP) is widely used to estimate the leaf area index (LAI) of forest plots due to its advantages of high efficiency and low cost. A crucial step in the LAI estimation of forest plots via DHP is choosing a sampling scheme. However, various sampling schemes involving DHP have been used for the LAI estimation of forest plots. To date, the impact of sampling schemes on LAI estimation from DHP has not been comprehensively investigated. Methods In this study, 13 commonly used sampling schemes which belong to five sampling types (i.e. dispersed, square, cross, transect and circle) were adopted in the LAI estimation of five Larix principis-rupprechtii plots (25 m × 25 m). An additional sampling scheme (with a sample size of 89) was generated on the basis of all the sample points of the 13 sampling schemes. Three typical inversion models and four canopy element clumping index (Ωe) algorithms were involved in the LAI estimation. The impacts of the sampling schemes on four variables, including gap fraction, Ωe, effective plant area index (PAIe) and LAI estimation from DHP were analysed. The LAI estimates obtained with different sampling schemes were then compared with those obtained from litter collection measurements. Results Large differences were observed for all four variable estimates (i.e. gap fraction, Ωe, PAIe and LAI) under different sampling schemes. The differences in impact of sampling schemes on LAI estimation were not obvious for the three inversion models, if the four Ωe algorithms, except for the traditional gap-size analysis algorithm were adopted in the estimation. The accuracy of LAI estimation was not always improved with an increase in sample size. Moreover, results indicated that with the appropriate inversion model, Ωe algorithm and sampling scheme, the maximum estimation error of DHP-estimated LAI at elementary sampling unit can be less than 20%, which is required by the global climate observing system, except in forest plots with extremely large LAI values (~ > 6.0). However, obtaining an LAI from DHP with an estimation error lower than 5% is impossible regardless of which combination of inversion model, Ωe algorithm and sampling scheme is used. Conclusion The LAI estimation of L. principis-rupprechtii forests from DHP was largely affected by the sampling schemes adopted in the estimation. Thus, the sampling scheme should be seriously considered in the LAI estimation. One square and two transect sampling schemes (with sample sizes ranging from 3 to 9) were recommended to be used to estimate the LAI of L. principis-rupprechtii forests with the smallest mean relative error (MRE). By contrast, three cross and one dispersed sampling schemes were identified to provide LAI estimates with relatively large MREs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.