The detection of arbitrary-oriented and multi-scale objects in satellite optical imagery is an important task in remote sensing and computer vision. Despite significant research efforts, such detection remains largely unsolved due to the diversity of patterns in orientation, scale, aspect ratio, and visual appearance; the dense distribution of objects; and extreme imbalances in categories. In this paper, we propose an adaptive dynamic refined single-stage transformer detector to address the aforementioned challenges, aiming to achieve high recall and speed. Our detector realizes rotated object detection with RetinaNet as the baseline. Firstly, we propose a feature pyramid transformer (FPT) to enhance feature extraction of the rotated object detection framework through a feature interaction mechanism. This is beneficial for the detection of objects with diverse patterns in terms of scale, aspect ratio, visual appearance, and dense distributions. Secondly, we design two special post-processing steps for rotated objects with arbitrary orientations, large aspect ratios and dense distributions. The output features of FPT are fed into post-processing steps. In the first step, it performs the preliminary regression of locations and angle anchors for the refinement step. In the refinement step, it performs adaptive feature refinement first and then gives the final object detection result precisely. The main architecture of the refinement step is dynamic feature refinement (DFR), which is proposed to adaptively adjust the feature map and reconstruct a new feature map for arbitrary-oriented object detection to alleviate the mismatches between rotated bounding boxes and axis-aligned receptive fields. Thirdly, the focus loss is adopted to deal with the category imbalance problem. Experiments on two challenging satellite optical imagery public datasets, DOTA and HRSC2016, demonstrate that the proposed ADT-Det detector achieves a state-of-the-art detection accuracy (79.95% mAP for DOTA and 93.47% mAP for HRSC2016) while running very fast (14.6 fps with a 600 × 600 input image size).
The workload of radiologists has dramatically increased in the context of the COVID-19 pandemic, causing misdiagnosis and missed diagnosis of diseases. The use of artificial intelligence technology can assist doctors in locating and identifying lesions in medical images. In order to improve the accuracy of disease diagnosis in medical imaging, we propose a lung disease detection neural network that is superior to the current mainstream object detection model in this paper. By combining the advantages of RepVGG block and Resblock in information fusion and information extraction, we design a backbone RRNet with few parameters and strong feature extraction capabilities. After that, we propose a structure called Information Reuse, which can solve the problem of low utilization of the original network output features by connecting the normalized features back to the network. Combining the network of RRNet and the improved RefineDet, we propose the overall network which was called CXR-RefineDet. Through a large number of experiments on the largest public lung chest radiograph detection dataset VinDr-CXR, it is found that the detection accuracy and inference speed of CXR-RefineDet have reached 0.1686 mAP and 6.8 fps, respectively, which is better than the two-stage object detection algorithm using a strong backbone like ResNet-50 and ResNet-101. In addition, the fast reasoning speed of CXR-RefineDet also provides the possibility for the actual implementation of the computer-aided diagnosis system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.