Electronic waste (E-waste) contain large environmental contaminants such as toxic heavy metals and hazardous chemicals. These contaminants would migrate into drinking water or food chains and pose a serious threat to environment and human health. Biodegradable green electronics has great potential to address the issue of E-waste. Here, we report on a novel biodegradable and flexible transparent electrode, integrating three-dimensionally (3D) interconnected conductive nanocomposites into edible starch-chitosan-based substrates. Starch and chitosan are extracted from abundant and inexpensive potato and crab shells, respectively. Nacre-inspired interface designs are introduced to construct a 3D interconnected single wall carbon nanotube (SCNT)-pristine graphene (PG)-conductive polymer network architecture. The inorganic one-dimensional SCNT and two-dimensional PG sheets are tightly cross-linked together at the junction interface by long organic conductive poly(3,4-ethylenedioxythiophene) (PEDOT) chains. The formation of a 3D continuous SCNT-PG-PEDOT conductive network leads to not only a low sheet resistance but also a superior flexibility. The flexible transparent electrode possesses an excellent optoelectronic performance: typically, a sheet resistance of 46 Ω/sq with a transmittance of 83.5% at a typical wavelength of 550 nm. The sheet resistance of the electrode slightly increased less than 3% even after hundreds of bending cycles. The lightweight flexible and biocompatible transparent electrode could conform to skin topography or any other arbitrary surface naturally. The edible starch-chitosan substrate-based transparent electrodes could be biodegraded in lysozyme solution rapidly at room temperature without producing any toxic residues. SCNT-PG-PEDOT can be recycled via a membrane process for further fabrication of conductive and reinforcement composites. This high-performance biodegradable transparent electrode is a promising material for next-generation wearable green optoelectronics, transient electronics, and edible electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.