Plant uptake and accumulation of nanoparticles (NPs) represent an important pathway for potential human expose to NPs. Consequently, it is imperative to understand the uptake of accumulation of NPs in plant tissues and their unique physical and chemical properties within plant tissues. Current technologies are limited in revealing the unique characteristics of NPs after they enter plant tissues. An enzymatic digestion method, followed by single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) analysis, was developed for simultaneous determination of gold NP (AuNP) size, size distribution, particle concentration, and dissolved Au concentration in tomato plant tissues. The experimental results showed that Macerozyme R-10 enzyme was capable of extracting AuNPs from tomato plants without causing dissolution or aggregation of AuNPs. The detection limit for quantification of AuNP size was 20 nm, and the AuNP particle concentration detection limit was 1000 NPs/mL. The particle concentration recoveries of spiked AuNPs were high (79-96%) in quality control samples. The developed SP-ICP-MS method was able to accurately measure AuNP size, size distribution, and particle concentration in the plant matrix. The dosing study indicated that tomato can uptake AuNPs as intact particles without alternating the AuNP properties.
Cerium dioxide nanoparticles (CeO2NPs) are among the most broadly used engineered nanoparticles that will be increasingly released into the environment. Thus, understanding their uptake, transportation, and transformation in plants, especially food crops, is critical because it represents a potential pathway for human consumption. One of the primary challenges for the endeavor is the inadequacy of current analytical methodologies to characterize and quantify the nanomaterial in complex biological samples at environmentally relevant concentrations. Herein, a method was developed using single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) technology to simultaneously detect the size and size distribution of particulate Ce, particle concentration, and dissolved cerium in the shoots of four plant species including cucumber, tomato, soybean, and pumpkin. An enzymatic digestion method with Macerozyme R-10 enzyme previously used for gold nanoparticle extraction from the tomato plant was adapted successfully for CeO2NP extraction from all four plant species. This study is the first to report and demonstrate the presence of dissolved cerium in plant seedling shoots exposed to CeO2NPs hydroponically. The extent of plant uptake and accumulation appears to be dependent on the plant species, requiring further systematic investigation of the mechanisms.
Graphical abstractCeO 2 NPs dissolution was enhanced by the low molecular weight organic acids in root exudates and were taken up by radish as both nanoparticles and dissolved ions.
AbstractEven though the plant uptake of cerium oxide nanoparticles (CeO 2 NPs) has been reported, the mechanisms remain unknown. This study aimed to provide new insights into CeO 2 NPs plant uptake through two objectives: (1) to investigate whether CeO 2 NPs dissolute before their plant uptake and (2) to determine the in-planta speciation of Ce. Bench scale experiments were conducted by growing radish in solutions containing 10 mg elemental Ce/L of bulk CeO 2 particles, CeO 2 NPs or ionic Ce. Transmission electron microscope and inductively coupled plasma-mass spectrometry (ICP-MS) analysis suggested that one pathway for CeO 2 NPs uptake was through direct uptake of intact CeO 2 NPs. More importantly, our results confirmed that part of the particulate CeO 2 was transformed into ionic Ce on the root surface before they were taken up by plants. Ionic Ce uptake and transport was a primary mechanism for Ce accumulation in plant shoots. This study further demonstrated that enhanced CeO 2 dissolution on root surface was due to the organic acids with lower molecular weight (e.g. succinic acid) in radish root exudates.Large particles composed of high contents of P and Ce were detected in radish roots treated only with ionic Ce, suggesting the formation of CePO 4 particles. In summary, the results indicated that CeO 2 NPs was taken up by radish as both intact nanoparticles and dissolved ions. Inside plant tissues, Ce is present as a cocktail of CeO 2 NPs, dissolved Ce and Ce salt (e.g. CePO 4 ) and the specific combination of Ce species is tissue dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.