The measurement of blood pressure (BP) is critical to the treatment and management of many medical conditions. High blood pressure is associated with many chronic disease conditions, and is a major source of mortality and morbidity around the world. For outpatient care as well as general health monitoring, there is great interest in being able to accurately and frequently measure BP outside of a clinical setting, using mobile or wearable devices. One possible solution is photoplethysmography (PPG), which is most commonly used in pulse oximetry in clinical settings for measuring oxygen saturation. PPG technology is becoming more readily available, inexpensive, convenient, and easily integrated into portable devices. Recent advances include the development of smartphones and wearable devices that collect pulse oximeter signals. In this article, we review (i) the state-of-the-art and the literature related to PPG signals collected by pulse oximeters, (ii) various theoretical approaches that have been adopted in PPG BP measurement studies, and (iii) the potential of PPG measurement devices as a wearable application. Past studies on changes in PPG signals and BP are highlighted, and the correlation between PPG signals and BP are discussed. We also review the combined use of features extracted from PPG and other physiological signals in estimating BP. Although the technology is not yet mature, it is anticipated that in the near future, accurate, continuous BP measurements may be available from mobile and wearable devices given their vast potential.
Blood pressure is a basic physiological parameter in the cardiovascular circulatory system. Long-term abnormal blood pressure will lead to various cardiovascular diseases, making the early detection and assessment of hypertension profoundly significant for the prevention and treatment of cardiovascular diseases. In this paper, we investigate whether or not deep learning can provide better results for hypertension risk stratification when compared to the classical signal processing and feature extraction methods. We tested a deep learning method for the classification and evaluation of hypertension using photoplethysmography (PPG) signals based on the continuous wavelet transform (using Morse) and pretrained convolutional neural network (using GoogLeNet). We collected 121 data recordings from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) Database, each containing arterial blood pressure (ABP) and photoplethysmography (PPG) signals. The ABP signals were utilized to extract blood pressure category labels, and the PPG signals were used to train and test the model. According to the seventh report of the Joint National Committee, blood pressure levels are categorized as normotension (NT), prehypertension (PHT), and hypertension (HT). For the early diagnosis and assessment of HT, the timely detection of PHT and the accurate diagnosis of HT are significant. Therefore, three HT classification trials were set: NT vs. PHT, NT vs. HT, and (NT + PHT) vs. HT. The F-scores of these three classification trials were 80.52%, 92.55%, and 82.95%, respectively. The tested deep method achieved higher accuracy for hypertension risk stratification when compared to the classical signal processing and feature extraction method. Additionally, the method achieved comparable results to another approach that requires electrocardiogram and PPG signals.
Cardiovascular diseases (CVDs) have become the biggest threat to human health, and they are accelerated by hypertension. The best way to avoid the many complications of CVDs is to manage and prevent hypertension at an early stage. However, there are no symptoms at all for most types of hypertension, especially for prehypertension. The awareness and control rates of hypertension are extremely low. In this study, a novel hypertension management method based on arterial wave propagation theory and photoplethysmography (PPG) morphological theory was researched to explore the physiological changes in different blood pressure (BP) levels. Pulse Arrival Time (PAT) and photoplethysmogram (PPG) features were extracted from electrocardiogram (ECG) and PPG signals to represent the arterial wave propagation theory and PPG morphological theory, respectively. Three feature sets, one containing PAT only, one containing PPG features only, and one containing both PAT and PPG features, were used to classify the different BP categories, defined as normotension, prehypertension, and hypertension. PPG features were shown to classify BP categories more accurately than PAT. Furthermore, PAT and PPG combined features improved the BP classification performance. The F1 scores to classify normotension versus prehypertension reached 84.34%, the scores for normotension versus hypertension reached 94.84%, and the scores for normotension plus prehypertension versus hypertension reached 88.49%. This indicates that the simultaneous collection of ECG and PPG signals could detect hypertension.
A photoplethysmogram (PPG) contains a wealth of cardiovascular system information, and with the development of wearable technology, it has become the basic technique for evaluating cardiovascular health and detecting diseases. However, due to the varying environments in which wearable devices are used and, consequently, their varying susceptibility to noise interference, effective processing of PPG signals is challenging. Thus, the aim of this study was to determine the optimal filter and filter order to be used for PPG signal processing to make the systolic and diastolic waves more salient in the filtered PPG signal using the skewness quality index. Nine types of filters with 10 different orders were used to filter 219 (2.1s) short PPG signals. The signals were divided into three categories by PPG experts according to their noise levels: excellent, acceptable, or unfit. Results show that the Chebyshev II filter can improve the PPG signal quality more effectively than other types of filters and that the optimal order for the Chebyshev II filter is the 4th order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.