Carbon black particles surrounded by copper nanoparticles (Cu NPs) were synthesized using electroless plating method. Palladium chloride was adsorbed onto carbon black, followed by the reduction of palladium chloride for catalyzing the reduction of Cu ions on the surface of carbon black particles. After that, carbon black particles doped by palladium catalyst were dispersed and stirred in Cu plating bath. Cu ions being reduced, Cu NPs surrounded the surface of carbon black particles (Cu@CB). The ratios of Cu to carbon black were controlled through variation of weight of Cu ions in Cu plating bath from 1:1 to 1:7. Cu@CB was applied to electrically conductive substrates with ethyl cellulose binder. Electrical properties and morphology were measured and compared with different weight ratio of Cu and carbon black. It was found that when weight ratio of Cu to carbon black was above three, resistivity of conductive substrates fabricated decreased dramatically. Lowest resistivity was 5.93 × 10−4 Ωcm, confirming the advantages of Cu@CB which has possibility of lowering weight percentage of metal in conductive substrates through simple process.
In this study, we prepared silica millbase in organic solvent system and acrylic-based binder to obtain an organic insulating film with high transmittance and low dielectric constant. Appropriate dispersion medium was chosen, type of dispersant and amount of dispersant was determined for well-dispersed silica millbase, to prevent silica particles from agglomerating, and a suitable acrylic-base binder was designed and synthesized. The organic insulating film had transmittance of at least about 90%, and had a dielectric constant of less than 2. The organic insulating film has potential application in TFT-LCD as well as other types of display. Keywords: silica particle, dispersants, silica dispersion, acrylic binder, insulating thin film. 서 론 고도 정보화 사회에 있어서 디스플레이 산업은 반도체 산 업과 더불어 무한한 가능성을 가진 최첨단 핵심 산업으로써 과거 Television, 모니터, 모바일, 그리고 현재의 웨어러블 디 스플레이에 이르기까지 다방면으로 끊임없이 발전해왔다. 그 중 최근의 플렉서블 디스플레이와 함께 초고해상도 고품질 화질에 대한 고객들의 수요가 증가함에 따라 많은 기업들이 UHD TV, 4K 모바일을 비롯한 여러 분야에서 치열한 경쟁 을 벌이고 있다. 1 이에 소자의 고집적화·고속화에 대한 연구 및 상업화가 중 점적으로 이루어지고 있다. 이를 위해서는 무엇보다도 고집 적도에 따른 배선간의 커패시턴스(capacitance, C)와 배선의 저항(resistance, R)의 곱으로 표시되는 신호지연(RC delay)을 최소화하는 것이 최우선 과제이며 이를 위해 낮은 유전율을 갖는 소재를 통한 절연 박막의 개발이 요구된다. 2-4 저유전율 박막의 사용 시 배선간의 전파간섭을 감소시켜 TFT-LCD의 고품질화와 함께 소형화를 가능하게 한다. 저유전 특성 외에 도 TFT용 유기 절연 박막이 요구하는 특성으로는 높은 투과 율, 패턴화, 내화학성, 높은 기계적 물성 등을 들 수 있다. 이 를 위해 TFT-LCD용 절연 박막 개발에 필요한 다양한 소재 및 공정 연구가 진행되어 왔다. 5,6 저유전 소재 개발에 있어서 초기에는 SiO 2 또는 SiNx을 비 롯한 무기물을 이용한 연구가 진행되었다. 무기소재 이용 시 유기소재 기반 절연막에 비하여 낮은 누설 전류와 높은 breakdown voltage 등 전기적 특성과 내화학성, 기계적 물성 이 우수하지만, 높은 유전상수와 증착 공정, 패터닝을 위한 †
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.