The development of space robots is vital to broadening human cognitive boundaries. Space robots have been deployed in space science experiments, extravehicular operations, and deep space exploration. The application of space robots undoubtedly reduces the risk and cost of space activities. Traditional space robots primarily utilize rigid structures, resulting in limited degrees of freedom, which restricts their operational capabilities. In contrast, soft robots with greater flexibility and robustness may be used for future space exploration. Soft robots applied in space environments must overcome significant challenges associated with ultrahigh vacuum, microgravity, extreme temperatures, and high‐energy radiation. Herein, a comprehensive analysis of the key advantages of soft robots is presented based on the special requirements of the space environments for soft robots. Furthermore, brief insights into how soft robots must be changed in terms of their design, modeling, fabrication, sensing, and control to adapt to space environments are discussed. Specifically, soft robot scenarios with potential space application value are introduced. Finally, opinions regarding the potential directions of soft space robots are provided.
Space debris is considered an increasingly serious threat to on‐orbit spacecrafts. There are several potential solutions to this problem, including active debris removal. Flexible robots have shown promising adaptability and dexterity in soft manipulation owing to their inherent compliance. This compliance allows them to interact safely and efficiently during space missions such as active debris removal. Herein, inspired by the bistable structure and energy‐release mechanism of the Venus flytrap, a bistable origami‐based gripper is developed. The flexible gripper, which can rapidly achieve stable state switching, is in the form of a biomimetic flytrap leaf curvature and is actuated using a shape memory alloy actuator. Subsequently, a flytrap bristle‐like locking structure is used to ensure locking via the action of a dielectric elastomer actuator to alleviate the vibration instability of the flexible robot under rapid actuation. The experimental results showed that the flexible gripper can achieve effective capture within approximately 300 ms. In addition, it exhibits good adaptability and mechanical robustness with targets having complex shapes and sizes, indicating its potential applications in the space capture and sampling fields.
Space Debris Capture Robotics Flexible robots have shown promising adaptability and dexterity in space capture owing to their inherent compliance. In article number http://doi.wiley.com/10.1002/aisy.202200468, Yongchang Zhang and colleagues present a flytrap‐inspired bistable origami‐based gripper for rapid active debris removal. The proposed gripper can realize ultrafast effective capture of space debris models, and it exhibits good adaptability with targets having complex shapes and sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.