Succinate has long been known to be only an intermediate product of the tricarboxylic acid cycle until identified as a natural ligand for SUCNR1 in 2004. SUCNR1 is widely expressed throughout the body, especially in the kidney. Abnormally elevated succinate is associated with many diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, and ischemia injury, but it is not known whether succinate can cause kidney damage. This study showed that succinate induced apparent renal injury after treatment for 12 weeks, characterized by a reduction in 24h urine and the significant detachment of the brush border of proximal tubular epithelial cells, tubular dilation, cast formation, and vacuolar degeneration of tubular cells in succinate-treated mice. Besides, succinate caused tubular epithelial cell apoptosis in kidneys and HK-2 cells. Mechanistically, succinate triggered cell apoptosis via SUCNR1 activation. In addition, succinate upregulated ERK by binding to SUCNR1, and inhibition of ERK using PD98059 abolished the pro-apoptotic effects of succinate in HK-2 cells. In summary, our study provides the first evidence that succinate acts as a risk factor and contributes to renal injury, and further research is required to discern the pathological effects of succinate on renal functions.
Objective: Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is one of the most common causes of liver dysfunction. ATGL is closely related to hepatic steatosis as the speed-limited triacylglycerol lipase. Nevertheless, the expression and regulation of ATGL in NAFLD remain unclear. Methods: Using immunohistochemistry and qRT-PCR to detect the expression of ATGL and BTRC in different models with hepatic steatosis. Co-IP evaluated the binding of ATGL and BTRC. Knockdown of BTRC employed by adenoviruses and then analyzed the ATGL expression, triglyceride levels, and lipid droplets accumulation. Results: Our results revealed that ATGL protein level was decreased in animal and cellular models of hepatic steatosis and the liver tissues of cholangioma/hepatic carcinoma patients with hepatic steatosis, while the ATGL mRNA level had hardly changed; which means the decreased ATGL mainly degraded through the proteasome pathway. BTRC was identified as the E3 ligase for ATGL, up-regulated, and negatively correlated with ATGL level. Moreover, adenovirus-mediated knockdown of BTRC ameliorated hepatic steatosis via up-regulating ATGL level. Conclusions: Our study demonstrates a crucial role of elevated BTRC in hepatic steatosis through promoting ATGL proteasomal degradation as a new ATGL E3 ligase and suggests BTRC may serve as a potential therapeutic target for NAFLD.
Retinal fibrosis is a severe pathological change in the late stage of diabetic retinopathy and is also the leading cause of blindness. We have previously revealed that N-cadherin was significantly increased in type 1 and type 2 diabetic mice retinas and the fibrovascular membranes from proliferative diabetic retinopathy (PDR) patients. However, whether N-cadherin directly induces retinal fibrosis in DR and the related mechanism is unknown. Here, we investigated the pathogenic role of N-cadherin in mediating retinal fibrosis and further explored the relevant therapeutic targets. We found that the level of N-cadherin was significantly increased in PDR patients and STZ-induced diabetic mice and positively correlated with the fibrotic molecules Connective Tissue Growth Factor (CTGF) and fibronectin (FN). Moreover, intravitreal injection of N-cadherin adenovirus significantly increased the expression of FN and CTGF in normal mice retinas.Mechanistically, overexpression of N-cadherin promotes N-cadherin cleavage, and N-cadherin cleavage can further induce translocation of non-p-βcatenin in the nucleus and upregulation of fibrotic molecules. Furthermore, we found a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.