DNA damage response is a fundamental mechanism to maintain genome stability. The ATR-WEE1 kinase module plays a central role in response to replication stress. Although the ATR-WEE1 pathway has been well studied in yeasts and animals, how ATR-WEE1 functions in plants remains unclear. Through a genetic screen for suppressors of the Arabidopsis atr mutant, we found that loss of function of PRL1, a core subunit of the evolutionarily conserved MAC complex involved in alternative splicing, suppresses the hypersensitivity of atr and wee1 to replication stress. Biochemical studies revealed that WEE1 directly interacts with and phosphorylates PRL1 at Serine 145, which promotes PRL1 ubiquitination and subsequent degradation. In line with the genetic and biochemical data, replication stress induces intron retention of cell cycle genes including CYCD1;1 and CYCD3;1, which is abolished in wee1 but restored in wee1 prl1. Remarkably, co-expressing the coding sequences of CYCD1;1 and CYCD3;1 partially restores the root length and HU response in wee1 prl1. These data suggested that the ATR-WEE1 module inhibits the MAC complex to regulate replication stress responses. Our study discovered PRL1 or the MAC complex as a key downstream regulator of the ATR-WEE1 module and revealed a novel cell cycle control mechanism.
Significance DNA damage causes genome instability and numerous diseases including cancers. Homologous recombination repair (HR) is an error-free pathway to repair DNA double-strand breaks, the most serious forms of DNA damage. However, the HR mechanisms in plants are still poorly understood. The transcription factor SOG1 is a master regulator of plant DNA damage responses. In this study, we find that a plant-specific ubiquitin E3 ligase DDRM1 ubiquitinates and stabilizes SOG1 to promote HR. Therefore, DDRM1- SOG1 is a plant-specific module for HR. DDRM1 is an evolutionarily ancient protein, which is identified in mosses, the first land plants, indicating that DNA damage response is an important mechanism for plant evolution from aquatic to land.
Halovirus is a major force that affects the evolution of extreme halophiles and the biogeochemistry of hypersaline environments. However, until now, the systematic studies on the halovirus ecology and the effects of salt concentration on virus-host systems are lacking. To provide more valuable information for understanding ecological strategies of a virus-host system in the hypersaline ecosystem, we studied the interaction between halovirus SNJ1 and its host Natrinema sp.J7-2 under various NaCl concentrations. We found that the adsorption rate and lytic rate increased with salt concentration, demonstrating that a higher salt concentration promoted viral adsorption and proliferation. Contrary to the lytic rate, the lysogenic rate decreased as the salt concentration increased. Our results also demonstrated that cells incubated at a high salt concentration prior to infection increased the ability of the virus to adsorb and lyse its host cells; therefore, the physiological status of host cells also affected the virus-host interaction. In conclusion, SNJ1 acted as a predator, lysing host cells and releasing progeny viruses in hypersaline environments; in low salt environments, viruses lysogenized host cells to escape the damage from low salinity.
DNA replication stress threatens genome stability and is a hallmark of cancer in humans. The evolutionarily conserved kinases ATR (ATM and RAD3-related) and WEE1 are essential for the activation of replication stress responses. Translational control is an important mechanism that regulates gene expression, but its role in replication stress responses is largely unknown. Here we show that ATR-WEE1 control the translation of SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a master transcription factor required for replication stress responses in Arabidopsis thaliana. Through genetic screening, we found that the loss of GENERAL CONTROL NONDEREPRESSIBLE 20 (GCN20) or GCN1, which function together to inhibit protein translation, suppressed the hypersensitivity of the atr or wee1 mutant to replication stress. Biochemically, WEE1 inhibits GCN20 by phosphorylating it; phosphorylated GCN20 is subsequently polyubiquitinated and degraded. Ribosome profiling experiments revealed that that loss of GCN20 enhanced the translation efficiency of SOG1, while overexpressing GCN20 had the opposite effect. The loss of SOG1 reduced the resistance of wee1 gcn20 to replication stress, whereas overexpressing SOG1 enhanced the resistance to atr or wee1 to replication stress. These results suggest that ATR-WEE1 inhibits GCN20-GCN1 activity to promote the translation of SOG1 during replication stress. These findings link translational control to replication stress responses in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.