Hot compression tests were carried out on a Gleeble-3800 thermal mechanical simulator in the temperature range from 700 to 900 °C and strain rate range from 0.005 to 10 s−1 to investigate the hot deformation behavior of B1500HS high-strength steel. Softening mechanisms of B1500HS high-strength steel under different deformation conditions were analyzed according to the characteristics of flow stress–strain curves. By analyzing and processing the experimental data, the values of steady flow stress, saturated stress, dynamic recovery (DRV) softening coefficient, and other factors were solved and these parameters were expressed as functions of Zener–Hollomon factors. Based on the dislocation density theory and the kinetic model of dynamic recrystallization (DRX), constitutive models corresponding to different softening mechanisms were established. The flow stress–strain curves of B1500HS predicted by a constitutive model are in good agreement with the experimental results and the correlation coefficient is . The comparison results indicate that the constitutive models can accurately reflect the deformation behavior of B1500HS high-strength steel under different conditions.
In this research, B1500HS high-strength steel with different thicknesses were laser welded, and the effects of welding speed and post quenching were investigated by analyzing the microstructure, microhardness distribution, and high-temperature tensile properties of weld joints. The results show that an obvious difference can be found in the metallographic structure and grain morphology of the weld joint at different locations, which also lead to the significant uneven distribution of hardness. After quenching, the grain size of the original heat-affected zone was uniform, the columnar grains in the fusion zone were transformed into fine equiaxed grains, and no obvious hardness difference can be found in the weld joint. For the weld joint without quenching, the increase of welding speed can reduce the dimensions of grains of fusion zone and coarse grain zone, and slightly increase the hardness of these regions. In contrast, welding speed change has little influence on the microstructure and hardness of the weld joint after quenching. The high-temperature flow stress–strain curves of fusion zone welded under different welding speeds were calculated based on the mixture rule. The analysis results indicated that the fusion zone has higher strength but lower elongation than the base metal. In addition, the change of welding speed has a small impact on the high-temperature tensile properties of the fusion zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.