This study investigates the effect of laser shock peening (LSP) on the chloride-induced stress corrosion cracking (SCC) of 304 austenitic steels. LSP can induce a high compressive residual stress to a depth of 700 µm and plastic deformation structures of dislocations, deformation twins, and stacking faults. Constant-load SCC tests in MgCl2 solution suggested that LSP can retard the crack initiation and slow the crack growth. LSP-treated subsurface layers experience ductile fracture while the central regions exhibit intergranular SCC. The LSP-induced deformation structures may impede dislocation slips, while the LSP-induced compressive residual stress can lessen the stress intensity factor of crack tips and decrease the local stress for film rupture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.