In this work, homogeneous ceramics-polymer nanocomposites consisting of surface treated BaTiO3 (BT) particles as fillers and poly(vinylidene fluoride) polymer as matrix have been prepared using a solution casting process. The nanocomposites exhibit enhanced dielectric permittivity and reduced loss tangent. The frequency and temperature dependencies of the dielectric permittivity and loss tangent of the nanocomposites suggest that the introduced BT phase and interface areas contribute to the improvement of the dielectric responses. Meanwhile, the X-ray diffraction patterns and Differential Scanning Calorimetry (DSC) curves indicate that the incorporation of ceramic particles contributes to the decrease of the crystallite size, the increase of the crystallinity, and the shift of the crystallization temperature of the polymer matrix. Furthermore, the dielectric displacement and energy density of the nanocomposites are significantly enhanced and an energy density of 3.54 J/cm3 was obtained under an electric field of 200 MV/m with the BT concentration of 20 vol. %. The results indicate that the introduced ceramic fillers and interface areas have positive influences on the structure of the polymer matrix and contribute to the enhancement of the dielectric responses and energy storage properties of the nanocomposites.
We report nanocomposites of increased dielectric permittivity, enhanced electric breakdown strength and high-energy density based on surface-modified BaTiO 3 (BT) nanoparticles filled poly(vinylidene fluoride) polymer. Polyvinylprrolidone (PVP) is used as the surface modification agent and homogeneous nanocomposite films have been prepared by solution casting processing. The dielectric permittivity of the nanocomposite with treated BT is higher than those with untreated BT and reaches the maximum value of 77 (1 kHz) at BT concentration of 55 vol%. The electric breakdown strength of the nanocomposite is greatly enhanced to 336 MV/m at BT concentration of 10 vol% and the calculated energy density is 6.8 J/cm 3 . The results indicate that using PVP as surface modification agent can greatly enhance the dielectric permittivity and electric breakdown strength of the ceramic-polymer nanocomposite and achieve high-energy density for energy storage and power capacitor applications.
It has been determined that long noncoding RNAs (lncRNAs) are identified as a potential regulatory factor in multiple tumors as well as multiple myeloma (MM). However, the role of colorectal neoplasia differentially expressed (CRNDE) in the pathogenesis of MM remains unclear. In this study, we found that the CRNDE expression level, in MM samples and cell lines, is higher than that in the control detected by real-time qPCR, which is also closely related to tumor progression and poor survival in MM patients. Knockdown of CRNDE significantly inhibits the proliferative vitality of MM cells (U266 and RPMI-8226), induces cell cycle arrest in the G0/G1 phase, and promotes apoptosis. After being transfected with siRNA, miR-451 expression observably increases. Bioinformatics analysis and luciferase assay reveal the interaction by complementary bonding between CRNDE and miR-451. Pearson's correlation shows that CRNDE is negatively correlated to miR-451 expression in human MM samples. Subsequently, miR-451 inhibitor rescues the inhibited tumorigenesis induced by CRNDE knockdown. Our study illustrates that lncRNA CRNDE induces the proliferation and antiapoptosis capability of MM by acting as a ceRNA or molecular sponge via negatively targeting miR-451, which could act as a novel diagnostic marker and therapeutic target for MM.
Homogeneous ceramics-polymer nanocomposites comprising core-shell structured BaTiO3/SiO2 nanoparticles and a poly(vinylidene fluoride) polymer matrix have been prepared. The nanocomposite of 2 vol. % BaTiO3/SiO2 nanoparticles exhibits 46% reduced energy loss compared to that of BaTiO3 nanoparticles, and an energy density of 6.28 J/cm3, under an applied electric field of 340 MV/m. Coating SiO2 layers on the surface of BaTiO3 nanoparticles significantly reduces the energy loss of the nanocomposites under high applied electric field via reducing the Maxwell–Wagner–Sillars interfacial polarization and space charge polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.