Upon treatment removal, spontaneous reactivation of latently infected T cells remains a major barrier toward curing HIV. Therapies that reactivate and clear the latent reservoir are only partially effective, while latency-promoting agents (LPAs) used to suppress reactivation and stabilize latency are understudied and lack diversity in their mechanisms of action. Here, we identify additional LPAs using a screen for gene-expression fluctuations (or “noise”) that drive cell-fate specification and control HIV reactivation from latency. Single-cell protein dynamics of a minimal HIV gene circuit were monitored with time-lapse fluorescence microscopy. We screened 1,806 drugs, out of which 279 modulate noise magnitude or half autocorrelation time. Next, we tested the strongest noise modulators in a Jurkat T cell latency model and discovered three LPAs that would be overlooked by quantifying their mean expression levels alone. The LPAs reduced reactivation of latency in both Jurkat and primary cell models when challenged by synergistic and potent combinations of HIV activators. The two strongest LPAs, NSC 401005 and NSC 400938, are structurally and functionally related to inhibitors of thioredoxin reductase, a protein involved in maintaining redox balance in host cells. Experiments with multiple functional analogs revealed two additional LPAs, PX12 and tiopronin, and suggest a potential LPA family, within which some are commercially available and Food and Drug Administration–approved. The LPAs presented here may provide new strategies to complement antiretroviral treatments. Screening for gene expression noise holds the potential for drug discovery in other diseases.
Aims
To investigate if urinary AQP5 serves as a new potential biomarker of diabetic nephropathy.
Methods
Using an AQP5-specific enzyme-linked immunosorbent assay, we measured serum and urine AQP5 first in a cohort consisting of normal controls (n = 26) and patients with diabetes mellitus (n = 25) or diabetic nephropathy (n = 33) and then in a validation cohort possessing normal controls (n = 10), patients with diabetes mellitus (n = 10) or diabetic nephropathy (n = 14), and patients with chronic kidney disease of unknown etiology (n = 10). We used various statistical methods including Pearson’s correlation coefficient, ANOVA with Holm–Sidak test, Receiver Operator Curve, and multiple logistic regression to analyze the data.
Results
Urine AQP5/creatinine 1) is significantly higher in diabetic nephropathy than in other two groups, and in diabetic nephropathy stage V than in stage III; 2) correlates with serum creatinine, urine albumin, and multiple other known risk factors of the disease; and 3) improves the clinical models in distinguishing diabetic nephropathy from normal controls and diabetic mellitus.
Conclusion
Our data suggest that urine AQP5/creatinine may possess diagnostic and prognostic values as a biomarker of diabetic nephropathy.
Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM) are caused by inactivating mutations in
TSC1
or
TSC2
, leading to mTORC1 hyperactivation. The mTORC1 inhibitors rapamycin and analogs (rapalogs) are approved for treating of TSC and LAM. Due to their cytostatic and not cytocidal action, discontinuation of treatment leads to tumor regrowth and decline in pulmonary function. Therefore, life-long rapalog treatment is proposed for the control of TSC and LAM lesions, which increases the chances for the development of acquired drug resistance. Understanding the signaling perturbations leading to rapalog resistance is critical for the development of better therapeutic strategies. We developed the first Tsc2-null rapamycin-resistant cell line, ELT3-245, which is highly tumorigenic in mice, and refractory to rapamycin treatment.
In vitro
ELT3-245 cells exhibit enhanced anchorage-independent cell survival, resistance to anoikis, and loss of epithelial markers. A key alteration in ELT3-245 is increased β-catenin signaling. We propose that a subset of cells in TSC and LAM lesions have additional signaling aberrations, thus possess the potential to become resistant to rapalogs. Alternatively, when challenged with rapalogs TSC-null cells are reprogrammed to express mesenchymal-like markers. These signaling changes could be further exploited to induce clinically-relevant long-term remissions.
Highlights d Gene expression bursts from the HIV LTR promoter increase with T cell size d Larger T cells latently infected with HIV exclusively reactivate from latency d Reactivation from HIV latency is cell-cycle dependent, with enhancement in G1 d Checkpoint arrestors actively modulate cell cycle to bias viral decision-making
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.