Backgroud: microRNAs (miRNAs) are involved in cancer-related processes. The miRNA-125b (miR-125b) has been identified as miRNA over-expressed in a wide variety of cancers. However, the role of miR-125b in the context of cervical carcinoma remains unknown. Methods: In this study, the effect of miR-125b on the proliferation and apoptosis of human cervical cells was analyzed by MTT assay and Flow cytometry analysis. we identified phosphoinositide 3-kinase catalytic subunit delta (PIK3CD) as a novel miR-125b target. Results: overexpression of miR- 125b in HeLa cervical cancer cells decreased cell proliferation, induced apoptosis and down-regulated expression of PIK3CD. To identify the mechanisms responsible, we investigated the PI3K/Akt pathway and found that PI3K, phospho-Akt, and phospho-mTOR were all down-regulated, while Bid was up-regulated in miR-125b-overexpressing subclones. In vivo, over expression of miR-125b in HeLa cells markedly reduced their ability to form tumors. Conclusion: these results suggest that miR-125b suppresses tumor growth activity by targeting the PI3K/ Akt/mTOR signaling pathway, and may provide a target for effective therapies.
The aim of the present study was to investigate the inhibitory effects of the polyphenol epigallocatechin-3-gallate (EGCG) on the growth of cervical carcinoma cell lines infected with different high-risk human papillomavirus (HPV) subtypes, as well as the associated regulation of microRNA (miR) expression. Cell proliferation was measured using an MTT assay. The effects of 7 different concentrations of EGCG (100, 80, 60, 40, 20, 10 and 0 µg/ml) on HeLa cell proliferation were assessed. HeLa cell growth was significantly inhibited by EGCG in a dose- and time-dependent manner (P<0.05), and the IC50 was 90.74 and 72.74 µg/ml at 24 and 48 h, respectively. The expression of miR-210, miR-29a, miR-203 and miR-125b in HeLa (HPV16/18+), SiHa (HPV16+), CaSki (HPV16+) and C33A (HPV-) cell lines was measured using quantitative polymerase chain reaction analysis. In CA33 cells, miR-203 (all P<0.001) and miR-125b (P<0.01 and <0.0001) were significantly downregulated by EGCG, and miR-210 was significantly upregulated with 40 and 60 µg/ml EGCG (P<0.0001). miR-125b was significantly downregulated (P<0.001 and <0.0001), and miR-210 and miR-29 were significantly upregulated by ≤80 µg/ml EGCG in HeLa cells (all P<0.0001). In CaSki cells, miR-210, miR-29a (all P<0.001) and miR-125b (P<0.01–0.0001) were significantly upregulated by EGCG. In SiHa cells, miR-125b (both P<0.001) and miR-203 (P<0.01 and <0.0001) were significantly upregulated by EGCG. In conclusion, the results of the present study suggest that EGCG suppresses cervical carcinoma cell growth, possibly via regulating the expression of miRs, suggesting their potential as therapeutic targets for the control and prevention of cervical cancer. Additionally, EGCG may be considered a novel anti-cervical cancer drug in the future.
Objectives Preeclampsia (PE) is a major cause of mortality and morbidity among pregnant mothers and their fetuses worldwide. Recent studies have shown that several microRNAs (miRNAs) play crucial role in pathogenesis of PE patients; however, the mechanisms responsible for differences in miRNA function in PE largely remain to be determined. Materials and Methods We studied that NUDT21 expression was markedly increased, whereas EZH2 was decreased in placental samples from patients with PE. We identified NUDT21 as an interaction partner of enhancer of zeste homologue 2 (EZH2). NUDT21 co‐localized with EZH2 in the human trophoblast cell line, HTR‐8/SVneo and NUDT21 was shown to bind to EZH2 in RNA immunoprecipitation assays. NUDT21 has previously been reported to be involved in alternative polyadenylation; thus, the interaction between NUDT21 and EZH2 may play an important role in the crosstalk between alternative polyadenylation (APA) and miRNA‐mediated gene silencing in PE. Results In the human trophoblast cell line HTR‐8/SVneo, loss‐of‐function assays indicated that knockdown of NUDT21 suppressed cell proliferation, migration and tube formation. Furthermore, functional studies showed that NUDT21 elongated the 3'‐UTR of mRNAs thereby exposing more miRNA binding sites (including miR138 and miR363), which enhanced the efficiency of miRNA‐mediated gene silencing and promoted EZH2 binding. Conclusions This is the first report about the relationship of NUDT21 and EZH2. The data indicate that the aberrant expression of NUDT21 contributes to PE by targeting 3'‐UTR of EZH2 mRNA. These findings may provide novel targets for future investigations into therapeutic strategies for PE.
Abstract.The aim of the current study was to investigate the suppressive effects of pSilencer T7-human epidermal growth factor receptor 2 (HER2)-short hairpin RNA (shRNA) recombinant plasmids on human SKOV3 ovarian cancer cell growth and sensitivity to carboplatin (CBP). Three different pairs of shRNAs (shRNAa, shRNAb and shRNAc), targeting the HER2 gene, were selected and transfected into human SKOV3 cells, respectively. The expression levels of HER2 were then detected by immunohistochemical (IHC), semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. In addition, cell cycle and cell growth were investigated using cell counting kit-8 (CCK-8). The results of the IHC and western blot analyses revealed that shRNAb significantly inhibited HER2 protein expression in SKOV3 cells. shRNAb exhibited an improved effect on HER2 expression compared with shRNAa (P<0.01), while shRNAc did not affect HER2 expression. Nontransfected and nonspecific shRNA groups were used as the negative controls. Knockdown of HER2 expression by shRNA was initiated at 24 h following transfection, achieving an optimum effect at 48 h and lasting for at least 72 h after the treatment. The CCK-8 cell growth assay indicated that the knockdown of HER2 expression in the SKOV3 cell line resulted in significant growth suppression and cell cycle arrest. In addition, inhibition of HER2 significantly increased SKOV3 cell sensitivity to CBP treatment. In conclusion, pSilencer T7-HER2-shRNA significantly inhibited HER2 expression in human ovarian cancer cells in vitro and induced chemotherapeutic sensitivity to CBP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.