This paper presents an intuitive end-to-end interaction system between a human and a hexacopter Unmanned Aerial Vehicle (UAV) for field exploration in which the UAV can be commanded by natural human poses. Moreover, LEDs installed on the UAV are used to communicate the state and intents of the UAV to the human as feedback throughout the interaction. A real time multi-human pose estimation system is built that can perform with low latency while maintaining competitive performance. The UAV is equipped with a robotic arm, kinematic and dynamic attitude models for which are provided by introducing the center of gravity (COG) of the vehicle. In addition, a super-twisting extended state observer (STESO)-based back-stepping controller (BSC) is constructed to estimate and attenuate complex disturbances in the attitude control system of the UAV, such as wind gusts, model uncertainties, etc. A stability analysis for the entire control system is also presented based on the Lyapunov stability theory. The pose estimation system is integrated with the proposed intelligent control architecture to command the UAV to execute an exploration task stably. Additionally, all the components of this interaction system are described. Several simulations and experiments have been conducted to demonstrate the effectiveness of the whole system and its individual components.
Aerial operation with unmanned aerial vehicle (UAV) manipulator is a promising field for future applications. However, the quadrotor UAV manipulator usually suffers from several disturbances, such as external wind and model uncertainties, when conducting aerial tasks, which will seriously influence the stability of the whole system. In this paper, we address the problem of high-precision attitude control for quadrotor manipulator which is equipped with a 2-degree-of-freedom (DOF) robotic arm under disturbances. We propose a new sliding-mode extended state observer (SMESO) to estimate the lumped disturbance and build a backstepping attitude controller to attenuate its influence. First, we use the saturation function to replace discontinuous sign function of traditional SMESO to alleviate the estimation chattering problem. Second, by innovatively introducing super-twisting algorithm and fuzzy logic rules used for adaptively updating the observer switching gains, the fuzzy adaptive saturation super-twisting extended state observer (FASTESO) is constructed. Finally, in order to further reduce the impact of sensor noise, we invite a tracking differentiator (TD) incorporated into FASTESO. The proposed control approach is validated with effectiveness in several simulations and experiments in which we try to fly UAV under varied external disturbances.
During the flight of quadrotor unmanned aerial vehicle manipulator, external wind and model uncertainties will significantly affect the accuracy and stability of the controller. This study investigates the problem of high-precision attitude control for the quadrotor manipulator that is equipped with a 2-DOF robotic arm in presence of several disturbances based on a new sliding mode observer and a corresponding sliding mode controller. As for the proposed sliding mode observer, to reduce its estimation chattering phenomenon, a sigmoid function is exploited to replace the discontinuous signum function. Moreover, to adapt to the estimation of disturbances with different upper bounds of the first derivative, a fuzzy logic system algorithm is used to adaptively update the observer gains and slope parameters of the sigmoid function. Furthermore, a generalized super-twisting algorithm is incorporated into the proposed sliding mode observer. Similarly, the sliding mode controller is constructed by using the generalized super-twisting algorithm and a sigmoid function in addition to the sliding mode observer-based feedforward disturbance compensation. In addition, to further relieve the influence of system sensor noise, a tracking differentiator is exploited to incorporate with both proposed sliding mode observer and sliding mode controller. Finally, to demonstrate the effectiveness of the proposed method, several simulations and experiments on the quadrotor unmanned aerial vehicle manipulator system are conducted under varying external disturbances.
In this paper, an output-feedback fuzzy adaptive dynamic surface controller (FADSC) based on fuzzy adaptive extended state observer (FAESO) is proposed for autonomous underwater vehicle (AUV) systems in the presence of external disturbances, parameter uncertainties, measurement noises and actuator faults. The fuzzy logic system is incorporated into both the observers and controllers to improve the adaptability of the entire system. The dynamics of the AUV system is established first, considering the external disturbances and parameter uncertainties. Based on the dynamic models, the ESO, combined with a fuzzy logic system tuning the observer bandwidth, is developed to not only adaptively estimate both system states and the lumped disturbances for the controller, but also reduce the impact of measurement noises. Then, the DSC, together with fuzzy logic system tuning the time constant of the low-pass filter, is designed using estimations from the FAESO for the AUV system. The asymptotic stability of the entire system is analyzed through Lyapunov’s direct method in the time domain. Comparative simulations are implemented to verify the effectiveness and advantages of the proposed method compared with other observers and controllers considering external disturbances, parameter uncertainties and measurement noises and even the actuator faults that are not considered in the design process. The results show that the proposed method outperforms others in terms of tracking accuracy, robustness and energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.